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The genetic graph" a representation for the 
evolution of procedural knowledget$ 

IRA P. GOLDSTEIN 

Xerox Palo Alto Research, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A. 

I shall describe a model of the evolution of rule-structured knowledge that serves as a 
cornerstone of our development of computer-based coaches. The key idea is a graph 
structure whose nodes represent rules, and whose links represent various evolutionary 
relationships such as generalization, correction, and refinement. I shall define this graph 
and describe a student simulation testbed which we are using to analyze different genetic 
graph formulations of the reasoning skills required to play an elementary mathematical 
game. 
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1. Introduction 

1.1. A LEARNER-BASED PARADIGM FOR AICAI IS EVOLVING 

The  1970 's  have  seen the  evo lu t ion  of a new gene ra t i on  of c o m p u t e r - a i d e d  ins t ruc-  
t ional  p r o g r a m s  b a s e d  on  the  inclusion of A I - b a s e d  exper t i se  wi th in  the  C A I  system.  
These  sys tems s u r m o u n t  the  res t r ic t ive  na tu re  of  o l d e r  s c r i p t -ba sed  C A I  by  supply ing  
" r e a c t i v e "  l ea rn ing  e n v i r o n m e n t s  which can ana lyze  a wide  range  of s tuden t  r e sponses  
by m e a n s  of an e m b e d d e d  d o m a i n - e x p e r t .  E x a m p l e s  are  A I C A I  tu tors  for  g e o g r a p h y  
(Carbone l l ,  1970),  e lec t ronics  (Brown,  B u r t o n  & Z d y b e l ,  1973), set  t h e o r y  (Smith et 
al., 1975), N u c l e a r  M a g n e t i c  R e s o n a n c e  spec t ro scopy  (S leeman ,  1975),  and  m a t h e m a -  
tical games  (Bur ton  & Brown,  1976;  G o l d s t e i n  & Carr ,  1977). 

H o w e v e r ,  while  the  inclusion of d o m a i n  expe r t i s e  is an advance  ove r  ea r l i e r  scr ip t -  
based  C A I ,  the  tu to r ing  t heo ry  e m b e d d e d  wi thin  these  b e n c h m a r k  p r o g r a m s  for  
convey ing  this exper t i se  is e l emen ta ry .  In pa r t i cu la r ,  they  a p p r o a c h  teach ing  f rom a 
subset viewpoin t :  expe r t i s e  consists  of a set of  facts or  rules.  The  s tuden t ' s  k n o w l e d g e  is 
m o d e l l e d  as a subse t  of this knowledge .  Tu to r ing  consists  of encou rag ing  the g rowth  of 
this subset ,  gene ra l ly  by in te rven ing  in s i tua t ions  where  a miss ing fact or  rule  is the 
crit ical i ng red i en t  n e e d e d  to reach  the cor rec t  answer .  

This  is, of course ,  a s impl i f ica t ion  of  the  t each ing  process .  It has a l lowed  research  to 
focus on the cri t ical  task of  r ep r e sen t i ng  exper t i se .  But  the  subse t  v i ewpo in t  fails to 
r ep re sen t  the  fashion  in which the new k n o w l e d g e  evolves  f rom old  by such p rocesses  as 
ana logy,  gene ra l i za t ion ,  debugg ing  and  re f inement .  

t This research was supported under NSF grant SED77-19279 and conducted at the Artificial Intelligence 
Laboratory, Massachusetts Institute of Technology. 

$ This paper has evolved from many fruitful conversations with members of the Cognitive Computing 
Group at the MIT AI Lab (in particular Greg Clemenson, Mark Miller, Sandy Schoichet, Bob Sjoberg, Bill 
Swartout, Barbara White, Kurt van Lehn, Bruce Roberts, Jim Stansfield and Steve Rosenberg) and with 
members of the ICAI group at Bolt, Beranek and Newman (in particular John Seely Brown and Dick Burton). 
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This paper explores the genetic graph as a framework for representing procedural 
knowledge from an evolutionary viewpoint , t  thereby contributing to the movement  of 
AICAI from an expert-based to a learner-based paradigm.l: After introducing our 
experimental domain, the mathematical  game Wumpus,  and describing an expert- 
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FIG. 1. Block diagram of an AICAI tutor. 

t A potential confusion in terminology may occur here. The term "genetic" is often equated with heredity. 
However,  I use it here in its older sense, namely, the genetic method is the study of the origins and 
development of a phenomena.  This paper is an exercise in Genetic Epistemology, the study of the origin 
and development of knowledge. This enterprise has been articulately advocated by Piaget (1971), who 
considers it the foundation on which psychology should be based. 

~: There are other dimensions to this paradigm shift that include: (1) more sophisticated modelling of the 
student 's  knowledge and learning style (Burton & Brown, 1976; Brown, Burton & Larkin, 1977; Cart & 
Goldstein, 1977), (2) widening the communication channel from student to teacher via natural language 
interfaces (Burton & Brown, 1977), and (3) developing a theory of teaching skills (Collins, Warnock & 
Passafiume, 1975). 
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based coach which we have implemented,  I define the genetic graph and describe how it 
can improve the range of tutoring advice that the A I C A I  system can provide and the 
accuracy of the model that the system builds of the learner. Fig. 1 illustrates its central 
role. 

I then discuss in greater  detail the model of the learner implicit in the genetic graph. By 
articulating this model, I am able to suggest a measure of learning complexity in terms of 
the topological propert ies  of the graph. I conclude with a suggestion for reformulating 
traditional Piagetian notions of accommodat ion,  assimilation and equilibration in terms 
of our procedural  epistemology. 

While I shall describe a student simulation testbed which we have implemented to 
test various genetic graph formulations, this paper  is largely exploratory.  Its purpose is 
to serve as a critique of existing expert-based A I C A I  systems, in particular our Wumpus  
coach, and a proposal for an improved " learner -based"  design. 

1.2. A GRAPH REPRESENTATION OF THE SYLLABUS HAS ROOTS 
IN AICAI RESEARCH 

Scholar (Carbonell,  1970), the earliest of the A I C A I  tutors, employed a graph 
(semantic net) representat ion for declarative facts about  geography. The graph, 
however, encoded only domain specific relationships; it did not embody  a series of 
progressively more refined levels of geography knowledge linked by various evolu- 
tionary relationships.t  

SOPHIE-1  (Brown et al., 1973), the next major  A I C A I  milestone, was an expert-  
based system for the more complex domain of electronic troubleshooting. SOPHIE-1  
compared  a student 's  troubleshooting hypotheses for an electronic circuit with that of 
its embedded  expert  and offered advice when the student 's  analysis went astray. It 
employed a procedural  rather than a network representat ion for its electronics know- 
ledge, but this representat ion was largely a black box. SOPHIE-1  did not have access to 
a detailed, modular,  human-or iented representat ion of troubleshooting skills. Nor did 
it have a representat ion for the genesis of these skills. 

SOPHIE-2 ,  now under development ,  will incorporate a modular,  anthropomorphic  
representation for the expert ' s  knowledge (De Kleer, 1976). This structured expertise 
serves as a bet ter  foundation for expert-based tutoring, but still is not a model of how 
the student evolved to that level of competence.  

B U G G Y  (Brown et al., 1977), a program for building procedural  models of a 
student 's  arithmetic skills, does incorporate both a graph representat ion for the basic 
skills and some evolutionary relationships. The basic skill representat ion is a graph with 
links representing the skill/subskill relationships. The evolutionary component  consists 
of "devia t ion"  links to "buggy"  versions of the various skills. 

BIP-I I  (Westcourt,  Beard & Gould,  1977), a tutor for programming skills, again 
employs a network for the basic skill representation,  but embodies  a different set of 
evolutionary relationships. There are links for representing analogy, generalization, 
specialization, prerequisite and relative difficulty relations. The BIP- I I  skill network, 
however, does not include deviation links nor define an operational expert  for the 

-I- Scholar might be extended in this fashion, especially if employed with younger children whose theory of 
the world may not already be stabilized in the expert form embodied by Scholar. 
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p rog ramming  domain .  Ra the r  it employs  au thor - supp l ied  exercises a t tached to the 
re levant  skills in the ne twork .?  

The  genet ic  graph is a descendan t  of these ne twork  representa t ions .  Its nodes  are the 
procedura l  skills of players of varying proficiency and its links include the analogy,  
special izat ion,  genera l iza t ion  and  prerequis i te  re lat ions of BIP- I I  and  the devia t ion  
re la t ionships  of B U G G Y . $  

2. W u m p u s  serves as an exper imental  domain 

Designing  coaches for the maze explora t ion game,  W u m p u s  (Yob, 1975) has p roven  to 
be a profi table exper imenta l  d o m a i n  because  the game exercises basic skills in logic and  
probabil i ty .w This section defines our  vers ion of the gamell and  describes two expert -  
based coaches which have been  previously i m p l e m e n t e d  for it. The  next  section 
formula tes  an evo lu t ionary  epis temology of the knowledge  requi red  for skilled play, 
providing the basis for an improved  " l e a r n e r - b a s e d "  design. 

2.1. DEFINITION OF THE WUMPUS GAME 

The  player  is initially placed somewhere  in a war ren  of caves with the goal of slaying 
the Wtlmpus.  The  difficulty in f inding the beast  arises f rom the existence of dangers  
in the w a r r e n - - b a t s ,  pits and  the W u m p u s  itself. Pits and  the W u m p u s  are fatal; bats 
move the player  to a r a n d o m  cave elsewhere in the warren .  But  the player  can infer the 
p robab le  locat ion of dangers  f rom warnings  he receives. The  W u m p u s  can be sensed 
two caves away, pits and bats  one  cave away. Victory results f rom shoot ing an arrow 
into the W u m p u s ' s  lair; defeat  if the arrows are fruitlessly exhausted.  

Becoming  skilled poses a non- t r iv ia l  l ea rn ing  exper ience  for most  chi ldren and 
adul ts : �82 locat ing mul t ip le  dangers  in a r andomly  connec ted  war ren  of 20 or more  caves 

can be complex.  Hence ,  the game provides a useful p rob lem doma in  for deve lop ing  a 
theory of the evolu t ion  of procedura l  skills. 

2.2. WUMPUS AICAI TUTORS 

In 1976, we deve loped  W U S O R - I  (Stansfield, Carr  & Golds te in ,  1976), an expert -  
based coach. Skilled play was analyzed in terms of rules such as these: 

t Malt (Koffman & Blount, 1975), a tutor for machine language programming, does include an "expert" for 
problems composed from a limited set of skills and solved in a tutor-prescribed order. However, MALT's 
syllabus of skills are related only by the probability with which MALT includes them in a system-generated 
problem, and not by any evolutionary links. Hence, MALT does not have BIP's ability to choose a problem 
based on its evolutionary relationship to the student's current knowledge state. 

:]:The skill nodes themselves, corresponding to rules of the form: "if C1 & C2 & . . . ,  do A1 & A2 &. . .  ", 
could be expanded into more primitive networks of conditions and conjunction nodes similar to those 
employed in BUGGY and BIP-II, but I do not discuss that extension in this paper. Instead, I concentrate on 
describing the evolutionary relationships between skills. 

w group is also exploring evolutionary epistemologies for other domains ranging from elementary 
programming to airplane flying. 

U Yob's original game was played on the graph of a dodecahedron. Our version is a generalization involving 
a variable maze geometry, a variable number of dangers, and a variable warning distance for each danger. 

�82 By non-trivial, I mean that the experience is on the order of hours rather than minutes and that some 
players (given no coaching) fail to acquire certain skills after many hours of play. This is based on informal 
observations of over 30 players ranging in age from grade school children to adults. 
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Positive Evidence: A warning implies that a danger is in a neighboring cave. 
Elimination: Ira cave has a warning and all but one of its neighbors are known to be 
safe, then the danger is in the remaining neighbor. 
Multiple Evidence: Multiple warnings increase the likelihood that a given cave 
contains a danger. 

Below is an interaction with the W U S O R - I  coach which illustrates the fashion in 
which the coach explains a rule if its emp loymen t  would  result in a bet ter  move  than the 
one chosen by the student.  The s tudent ' s  responses are indented and underl ined.  

You  are at cave 15 with neighbors 4, 14 and 0. Brrr! There  is a draft. You  are near  a 
pit. What  now? 

1 > 4  

You are at cave 4 with neighbors  15, 14 and 2. Brrr! There  is a draft. Squeak!  A bat 
is near. (The game state is shown in Fig. 2.) Wha t  now? 

2 > 1 4  

(E l )  Mary,  it isn't necessary to take such large risks with pits. There  is multiple 
evidence of a pit in cave 14 which makes it quite likely that cave 14 contains a pit. It is 
less likely that cave 0 contains a pit. Hence,  we might want  to explore cave 0 instead. 
Do  you want  to take back your  move?  

"11 

FIc,. 2. The Wumpus game state after two moves, 

W U S O R - I  was insensitive to the relative difficulty of the various W u m p u s  skills. In 
1977, we took our  first step toward an evolu t ionary  ep is temology with W U S O R - I I  
(Carr, 1977), wherein  the rule set was divided into five phases  represent ing increasing 
skill at the task: 

Phase 1: Rules for visited, unvisited and fringe caves. 
Phase 2: Rules for possibly dangerous, definitely dangerous and safe caves. 
Phase 3: Rules for single versus multiply dangerous caves. 
Phase 4: Rules for "possibility sets', i.e. keeping track of the sources of dangers. 
Phase 5: Rules for numerical evidence. 

The tutor  did not describe the rule of a part icular  level of play until it believed the 
student  was familiar with the rules of the preceding leve[s.t  

t (Carr & Goldstein, 1977) describes the mechanisms by which it estimated the student's position in the 
syllabus. 
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These phases constituted a coarse genetic epistemology, better than the completely 
unordered approach of WUSOR-I ,  but still far from a detailed platform on which to 
build new knowledge from old in the student's mind. WUSOR-I I I ,  now being imple- 
mented, addresses this limitation. It has evolved from W U S O R - I I  by defining a set of 
symbolic links between rules that characterize such relationships as analogy, 
refinement, correction, and generalization.t The result is that the "syllabus" of the 
coach has evolved from an unordered skill set to a genetic graph of skills linked by their 
evolutionary relationships. 

3. The genetic graph formalizes the syllabus 

The "genetic graph" (GG) formalizes the evolution of procedural rules by representing 
the rules as nodes and their interrelationships as links. In this section I discuss four of 
these relationships--generalization/specialization, analogy, deviation/correction and 
simplification/refinement--and provide examples of their occurrence in the Wumpus 
syllabus. I also describe a student simulation testbed which we have implemented to 
explore the consequences of different rule formulations. In the next section, I consider 
what kinds of knowledge are not properly represented by a graph of rules, and propose 
appropriate extensions. 

3.1. GENETIC LINKS SPECIFY EVOLUTIONARY RELATIONSHIPS BETWEEN RULES 

R' is a generalization of R if R' is obtained from R by quantifying over some constant.$ 
Specialization is the inverse relation. In the Wumpus syllabus, for each trio of 
specialized rules for bats, pits and the Wumpus, there is usually a common generaliza- 
tion in terms of warnings and dangers.w Figure 3 illustrates such a cluster for rule 2.2 
which represents the deduction: "a warning implies that the neighbors of the current 
cave are dangerous". 

R' is analogous to R if there exists a mapping from the constants of R' to the constants 
of R. This is the structural definition employed by Moore & Newell (1973). Of course, 
not all analogies defined in this fashion are profitable. However, the GG is employed to 
represent those that are. 

Figure 3 illustrates analogy links between the specialization trio of R2.2 For example, 
mapping S Q U E A K  to D R A F T  and B+ (the set of caves risking BATS) to P+ (the sets 
of caves risking PITS) defines the analogy mapping between R2.2B and R2.2P. The 
similar nature of dangers makes clusters of this kind (one generalization and three 
specializations all connected by analogy links) common in the Wumpus world. As we 
shall discuss in section 5, identifying such densely linked clusters provides teaching 
leverage by providing multiple methods of explanation (one per link) for each consti- 
tuent rule. 

t It was also necessary to increase the grain of the rules. WUSOR-II rules were too coarse and hence 
obscured certain evolutionary relationships. 

$ This is a standard predicate calculus definition, applied here to quantifying over formulas representing 
rules rather than logical statements. 

w In one version of Wumpus, the wumpus warning propagates only one cave. In this case, bats, pits and the 
wumpus are exactly analogous. In more complex versions, the Wumpus is no longer exactly analogous. 
Hence, the analogies to bats and pit rules are in fact restricted cases or outright deviations. We represent this 
in the GG explicitly, thereby giving the coach an expectation for the traps the student will encounter. 
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FIG. 3. A region of the genetic graph. 

R' is a refinement of R if R' manipulates a subset of  the data manipulated by R on the 
basis of  some specialized properties. Simplification is the inverse relation. This relation 
represents the evolution of a rule to take account of a finer set of  distinctions. 
The Wumpus syllabus contains five major refinements corresponding to the five 
WUSOR-I1  phases. Figure 3 illustrates the refinement of the rule R1.1 through phases 
1, 2 and 3. R2.1 and R2.2,  for example,  refine R l ' s  treatment of the fringe caves by 
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distinguishing between safe and dangerous subsets. R3.1 and R3.2,  in turn, refine the 
dangerous subset into single and multiply dangerous categories. 

R' is a deviation of R if R' has the same purpose as R but fails to fulfill that purpose in 
some circumstances. Correction is the inverse relation. Deviat ions  arise naturally in 
learning as the result of simplifications, overgeneralizations,  mistaken analogies,  and so 
on. While any rule can have deviant forms, the GG is used to record the more c o m m o n  
errors . t  

A deviant  W u m p u s  rule is: "If there is mult iple  ev idence  that a cave  contains  a pit, 
then that cave  definitely contains  a pit". The  debugged  rule includes  the additional  
condi t ion  that there is only  o n e  pit in the warren.  The  deviat ion has a natural genet ic  
origin: it is a reasonable  rule in the early stages of W u m p u s  play w h e n  the game is 
s implif ied by the coach to contain only  one  of each danger.  

3.2. GENETIC GRAPHS ARE BEING EXPLORED IN A STUDENT SIMULATION TESTBED 

The Wumpus  GG currently contains about 100 rules and 300 links.$ We are 
currently testing the reasonableness  of this graph by means of a "Student Simulation 
Testbed".w In this testbed, the performance of various simulated students, defined in 
terms of different regions of the GG, is being examined.  These students correspond to 
different evolutionary states. Figure 4 is the comparative trace of two students cor- 
responding to the mastery of phases 2 and 3, respectively. 

The "WHY" messages of Fig. 4 are printed by the student simulator as the rules 
defining a student are executed. The comments  inside cave boxes represent hypotheses  
of the simulated student regarding that cave. The bal loons reflect the differing hypo- 
theses of the two students regarding bat evidence for caves J and H. 

The phase 2 student (dotted path) does  not know the multiple evidence heuristic. 
Hence ,  he does not realize that cave J is to be preferred over cave H. While he 
understands that they both risk bats, he makes  no further distinction. Thus, he 
randomly selects from these two possibilities, unfortunately choosing the riskier H. The 

t The deviant skills recorded in the G G  account for errors arising from the correct application of incorrect 
rules. There  is another  class of errors arising from the incorrect application of correct rules. These  are errors 
arising from such causes as the occasional failure to check all precondit ions of a rule, the misreading of data, or 
confusion in the bookkeeping associated with a search process. Sleeman (1977) explores some errors of this 
class in his construction of a coach which analyzes a s tudent ' s  description of his algorithm. Sleeman's  coach, 
however,  does not have a representat ion for deviant or simplified versions of the algorithm to be tutored: 
indeed, he assumes that the student is familiar with the basic algorithm. A possible extension of his system 
would be to include a G G  representing evolutionary predecessors  of the skilled expert. 

$ These statistics are based on an explicit representat ion of each generalization, its specializations and their 
common  deviations. It is possible for the graph to be less extensive if procedures  for generat ing common  
deviations and specializations are supplied. This is the approach we shall eventually employ. Specializations 
are simple to generate.  Deviat ions are suggested by the common  bug types enumera ted  by such work as my 
own analysis of Logo programs (Goldstein, 1975), Sussman 's  (1975) analysis of Blocks world programs,  and 
Stevens & Collin's (1977) study of bugs in causal reasoning;  or they can be induced, for simple cases, by 
analyzing the student's performance (Self, 1974; Goldstein,  1975, Brown & Burton,  1977). However,  my 
current  research strategy has been to make the graph explicit, in order to unders tand its form. The next stage 
will include the extension to expanding the graph dynamically. 

w The testbed serves other purposes as well. Simulated s tudents  can be used to test the modelling and 
tutoring of teaching systems (Carr, 1977; Self, 1977; Wescour t  et al., 1977). They can also serve as models  of 
real s tudents,  and hence can yield insight for a human  teacher observing their performance (Brown et al., 
1977; Goldstein & Grimson,  1977). 

II Following this testing period, W U S O R - I I  will be converted to incorporate the GG. The expected 
improvement  in modell ing and tutoring is the subject of sections 5 and 6. 
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FIG. 4. D i v e r g e n t  b e h a v i o r  of  two  s i m u l a t e d  s t u d e n t s  

phase 3 student (dashed path) recognizes multiple (BAT2) evidence as more risky than 
single (BAT1) evidence and therefore selects the safer cave J. 

Figure 4 is a composite of the graphic output for the two students. The testbed only 
executes a single student at a time. It does not generate balloons nor place the " W H Y "  
messages on the Warren itself. 

Expert-based CAI allows only for the definition of "simulated students" formed 
from subsets of the expert 's  skills. The power of the G G  to broaden the tutor's 
understanding of the task is evident from the testbed: the GG permits not only the 
creation of subset students, but also students formed from specializations, deviations 
and simplifications of the expert 's rules. 

Nevertheless, it must be stressed that the evolutionary relations discussed here 
remain both underspecified and incomplete. There are many kinds of analogies, 
generalizations, and corrections. There are also other kinds of evolutionary processes 
for acquiring knowledge: learning by being told, learning by induction from past 
examples, and learning by deduction from old rules. The next chapter explores one of 
the directions in which the G G  must be extended to be an adequate representation for 
the evolution of a student's knowledge. 

4. Extensions to the genetic graph 

The preceding section defined a set of genetic relationships between individual rules. In 
this section, we extend the genetic graph to incorporate genetic relationships between 
groups of rules and between rules and the declarative facts that explain and justify their 
behavior. 
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4.1. THE EXTENDED GG GROUPS RELATED KNOWLEDGE INTO ISLANDS 

Our  first order theory of a G G  has the limitation that rules which are closely related and 
generally learned as a group are not so represented.  To address this limitation, rules are 
grouped into islands. A natural criterion for forming islands is to group rules that have 
the same goal. For Wumpus,  this translates into grouping rules which manipulate the 
same kind of evidence. This is illustrated in Fig. 5. 

For example,  the D +  island contains the rules which manipulate D+,  the set of 
possibly dangerous caves. One rule subtracts the neighbors of the current cave from D+ 
if there is no warning. The complementary  rule is also present: it adds to D +  the 
neighbor set if there is a warning. The third rule in the D +  island subtracts the visited 
caves from D+.  It insures that D +  contains only fringe caves. (A postrequisite planning 
link exists between these last two rules which is explained later in this section.) 

Islands allow the coach to tutor the student in terms of an overall concept for a group 
of rules and to model the student in terms of his possession of the conceptual base 
underlying a rule set. Just as an analogy between two rules can be explained, so too can 
an analogy between two islands of rules. Figure 5 illustrates this with an analogy link 
between the safe and dangerous islands. 

The acquisition of a group of skills is a natural learning episode since acquiring the 
island is a local t a sk - - the  rules all follow from a single concept. But moving to the next 
island requires a new conceptual base. To explore this movement ,  the simulated student 
testbed allows macro instructions which add entire islands of rules to the simulated 
student being constructed: 

> (Define__student 5 (island F) (island D - )  (island D+))  
Student 5 defined. ; This is the phase 2 player of Fig. 4. 

> (Define__student 6 (student 5) (island D1) (island D2)) 
Student 6 defined. ; This is the phase 3 player of Fig. 4. 

4.2. THE EXTENDED GG REPRESENTS THE JUSTIFICATIONS OF RULES 

The G G  as a representat ion of knowledge is still incomplete. Rules by themselves do 
not describe the declarative knowledge that explains and justifies their behavior. For 
Wumpus,  this declarative knowledge includes the definition of the evidence sets and 
axiomatic s tatements of their properties.  Figure 6 shows the declarative facts listed 
below linked to the various groups of rules whose behavior  they justify. 

The fringe F is the union of D +  and D -  (the safe caves). 
A warning implies that some of the neighbors of the current cave are members  of 
D+.  
D -  and D +  are disjoint. 

The G G  employed in the student simulation testbed has not yet been augmented in this 
fashion. 

This extension will be important  because of the possibility that the same evolutionary 
relationships linking procedural  rules can play a role linking declarative statements. 
One logistic s tatement  can be a generalization of another,  or analogous under some 
mapping of constants, or a refinement. With such an extended GG,  the coach could 
tutor both procedural  and declarative knowledge, obtaining leverage by moving 
between the two in the light of the student 's  current difficulties. 
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FIG. 6. Islands of rules have declarative foundations. 

4.3. T H E  E X T E N D E D  G G  R E P R E S E N T S  P L A N N I N G  K N O W L E D G E  

Not  all knowledge about rules describes their evolutionary relationships. Since sets of 
rules form problem solving programs for the task, we should expect, as with all 
programs, that knowledge  about their order of application must be represented. There 
is no difficulty in extending the GG to represent this knowledge.  It is only necessary to 
define the appropriate links. For this reason, prerequisite and postrequisite relations 
are defined.? Figure 5 illustrates various planning relations. For example,  a post- 
requisite link insures that the D +  rule "If there is a warning, add the neighbors to D + "  
is fo l lowed by the rule "Subtract the visited cave set from D + . "  This second rule is 
needed since some of the neighbors added to D +  may have been already visited, and 
hence are safe,t  

% An alternative is to supply mela-rules that specify the order of application. This is a useful approach when 
the goal is an expert program, bul it is not sufficient for the tutoring context. A recta-rule that specifies that a 
trio of rules be executed in the order R 1, R2, R3 does not tell the tutor whether this is the only order or merely 
one among a set of possible orders. The tutor must know if it is to respond appropriately to the student's 
idiosyncratic approach. The pianning links provide only the basic ordering constraints. Sacerdoti (1975) 
makes a similar argument for planning networks to facilitate self-debugging on the part of a problem solving 
system. 

:~ A single rule could have been written: "If there is a warning, add N-V to D + " ,  but breaking this 
procedure into two rules allows a finer grain of modelling and tutoring. The coach must be able to identify the 
deviant simplification of adding the neighbors without pruning the caves already visited. Thus as a general 
philosophy, rules are broken into small chunks with planning knowledge made explicit via links between 
rules. 
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Thus, the extended GG incorporates planning knowledge. As with any addition of 
knowledge, it supplies tutoring leverage. The coach can now expect that for certain 
rules, the student's difficulty may lie not in knowing the rules, but in understanding their 
order. The consequences of such confusion can be explored in the student simulation 
testbed. Below is illustrated a situation where the student has apparently forgotten to 
execute a postrequisite rule and shows the advice the new GG-based coach might offer 
in such situations. 

The following interaction with the Wumpus game was obtained from a version that 
allows the player to record his or her hypotheses on the display screen. The player's 
responses are underlined. The ]inal tutorial intervention (in italics) is a hypothetical one 
by the GG-based coach now under construction. 
We are now in cave D. The neighbors are caves C, G, and B. What now? 

>_B 

We are now in cave B. The neighbors are caves F, D, and A. What a stench! The 
Wumpus must be in one of the neighboring caves. Squeak! I hear bats. They must be 
in one of the neighboring caves. What now? 

> X+ ;This command marks caves that may contain a danger. 
Which danger (Bats, Pits or Wumpus)? BW. Which caves? AFD 

;The result is that the display screen shows a warren in which B A T +  and W U M  + 
markers appear in the designated caves. (Fig. 7 is a snapshot of the display in this 
state.) 

What now? 

>_C 

Ira, you have correctly recorded that caves A,  F and D risk bats based on the squeak in 
cave B. However, you have moved to cave C without concluding that cave D is safe. 
You know cave D is safe because you have visted there. You might want to record this 
knowledge to avoid confusion. 

$OUE.P~ 

~=IELL D ~  G~ I 

WARREN g:  2 I~I, Ts~ 1 PIT, 1 ~ TRAIL BO 
VISITED BO FR33~IGE ACFG UNVI:SI"TED EI'EE~ 
BAT-  BAT*  /~)F 
PIT- PI'T ,, 
WUf'I- ~,K,II'I * ADF 

FIG, 7. Planning advice. 
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4.4. THE EXTENDED GG IS A NETWORK OF ISLANDS 

In conclusion, the extended genetic graph is not different in kind from the basic genetic 
graph. It remains a graph of knowledge nodes linked by various genetic relationships. 
Its increased power derives from a hierarchical structure of grouped rules (islands), an 
extension of individual nodes from representing only rules to representing both rules 
and facts, and an augmentat ion of the link set to include control knowledge. 

Implicit in this structure is the following view of learning: new rules are constructed 
from old in terms of processes corresponding to the individual links. However ,  the 
graph does not describe a unique evolutionary path. One learner may rapidly acquire a 
generalization, another  may first build several specializations before constructing the 
generalization, while a third may never acquire the generalization. Hence,  the tutor 
should encourage this idiosyncratic construction of new knowledge by giving, advice 
appropriate  to the learner 's  current knowledge state (position in the graph) and 
particular style of learning (preference for particular links). The redesign of the 
Wumpus coach to employ the guidance of the G G  to more closely approximate  this 
ideal tutoring behavior is the subject of the next two sections. 

5. The genetic graph is a basis for tutoring 

The G G  guides the Tutor  component  of an A I C A I  system in two ways. First, it suggests 
which skills to discuss with the student, namely those at the frontier of the student 's  
position in the graph. Second, once a skill is chosen for discussion, the G G  supplies 
guidance for explaining that skill in more than one way by means of relating it to its 
evolutionary predecessors. 

5.1. THE GENETIC GRAPH SUGGESTS THE TUTORING TOPIC 

In script-based CAI,  the order in which topics are introduced is predefined. The student 
proceeds to the next author-supplied question after he has successfully answered the 
current query. This has the advantage that the author can control the introduction of 
material in the light of his understanding of the subject matter,  but the disadvantage 
that the order  is rigid. 

Exper t -based CAI  is less rigid since it has the power to allow the student to explore a 
problem in his own fashion, analyzing his responses in terms of an underlying skill set. 
Tutoring is oriented around supplying advice in those situations wherein the student has 
chosen a less than ideal option. But the Exper t -based tutor has no guidance with respect 
to whether discussion of a given skill is premature  in the context of those skills the 
student has already acquired. 

Providing a genetic graph addresses this limitation. If we accept the educational 
heuristic that learning is facilitated by being able to explain a new skill in terms of those 
already acquired, the skills with the highest priority for being taught are those on the 
"front ier"  of the student 's  knowledge model. Employing this heuristic, the A I C A I  
tutor can limit its intervention to those situations with " leverage" ,  namely those that 
involve the discussion of a skill on the frontier. For example,  consider two students: a 
beginner who has mastered the basic fringe rules and whose frontier is the dangerous 
and safe islands, and an intermediate player who has mastered these islands and whose 
frontier is now at the multiple evidence island. Let  us consider what kind of tutoring the 
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AICAI coach should offer if the player moves to cave 14 in the scenario game of Fig. 2. 
Recall that 14 is a bad choice because the existence of double evidence makes it likely 
that a fatal pit is there. For the intermediate student, the tutor would in tervene-- there  is 
leverage to describe the double evidence heuristic in terms of its evolutionary prede- 
cessors; for the beginner, the tutor would no t - - there  are no available genetic links with 
which to build an explanation. 

The G G  does not solve the "choice of topic" problem. It offers the frontier as a 
preferred subset, but the Tutor  must still choose among this subset or possibly decide to 
reject it entirely.t  To make this decision, the Tutor  must apply general teaching 
heuristics ("Vary the topic discussed!") and student specific strategies ("Maximize the 
opportunity for 'discovery learning'; that is, do not discuss any topic at all when the 
student's progress through the syllabus is proceeding at a satisfactory rate!").  The role 
of the G G  in this context is simply to make available to these teaching heuristics the 
epistemological relations between the skills of the syllabus. 

5.2. T H E  G E N E T I C  G R A P H  SUPPLIES M U L T I P L E  E X P L A N A T I O N S  

Once a topic is selected, the ability to explain that topic in more than one way is 
an important  tutoring technique. Script-based CA.I achieved this explanatory power 
by supplying "au thor"  languages in which clever explanations could be written by 
teachers. Expert-based CA_I, by eliminating scripts, lost this power. But in return it 
acquired the ability to respond to a larger number of situations, albeit by means 
of a restricted number of machine-generated explanation types. Genetic  AICAI 
retains the Expert-based CA.I ability to respond to a large number of situations, but 
adds the capability to explain a particular skill in diverse ways. This capability derives 
from the ability to explain a new rule in terms of its genetic links. For each link type, the 
tutor is provided with an explanation strategy. For example, Fig. 8 shows three 
variations on a WUSOR-I I  explanation generated by explaining the "avoid multiply 
dangerous situations" rule in terms of its evolutionary relatives. (The basic WUSOR-I I  
explanation is the one we examined earlier for the poor  move to cave 14 in the game 
state of Fig. 2.) 

As with the selection of the rule to be discussed, the choice of explanation for that rule 
is not determined by the GG. That  choice depends on general teaching heuristics (such 
as "Vary your explanation!") and student specific criteria (such as "Avoid strategies 
which have been consistently unsuccessful in the past!"). The role of the GG,  however, 
is to increase the available choices on which these selectional heuristics operate.  

t There  are alternatives to frontier tutoring. A teacher  could seek to explain the syllabus as a whole to give 
the s tudent  perspective. Then  later the teacher  could return to a given subset  of the syllabus and refine the 
s tudent ' s  knowledge. Norman  refers to this approach as Web tutoring (Norman,  Gen tne r  & Stevens, 1976). It 
is more useful however  for a syllabus of facts than one of procedural  skills. The reason is that skills have 
prerequisite relations that prevent  advanced skills from being used before simpler ones are acquired. Static 
facts don ' t  generally have such a rigid ordering. Thus  ou r  skill tutors usually do not employ the Web  
technique. 

Nevertheless,  it is possible to explain a skill whose evolutionary predecessors have not been acquired by 
constructing a long explanation ab initio. The frontier heuristic biases the system against such an approach, 
but  the Tutor  may be required to employ it in some situations (the frontier skills have already been explained 
many times and the s tudent  appears to need some perspective on the syllabus) and for some kinds of syllabi 
(the skills are largely independent  of one another).  
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5.3. TUTORING USING AN EXTENDED SYLLABUS REPRESENTATION 

The range of tutoring strategies is increased further by employing the extended syllabus 
described in the previous section. Examine again Fig. 5. The islands of rules for 
dangerous and safe caves are linked by a "bridge analogy",  a generalization of the 
analogy linking the individual rules. By tutoring the bridge analogy, explanatory 
leverage is gained by providing support  for an entire group of rules in a single 
explanation. 

Similarly, a declarative foundation provides another  opportuni ty for generating 
support  for an entire set of rules. Here  the common link is from a set of declarative facts 
to the island of rules they imply. For example,  the tutor, using the declarative 
foundation, might discuss the general importance of the concept of multiple evidence 
rather than the specific rules employed to maintain the single and multiple evidence 
sets. Again, the tutoring hypothesis is that by discussing the declarative foundation, the 
student will deduce a group of related rules on his own. It is therefore a potentially 
powerful tutoring strategy. 

5.4. THE GENETIC GRAPH DOES NOT SOLVE THE TUTORING PROBLEM 

Tutoring is a complex task for AI-based  CAI  systems that do not have access to 
author-supplied scripts. The system must decide (1) whether  to invervene, (2) what 
topic to discuss, and (3) how much to say about  that topic. t  The G G  does not decide 
these questions. However ,  it does serve, first, to constrain the set of topics by defining a 

t See Collins e t  al .  (1975) for a study of Socratic intervention strategies. 
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frontier, and, second, to extend the variety of explanations available for discussing the 
topic of choice. 

6. The genetic graph is a basis for modelling 

To offer appropriate tutorial advice, a teacher must accurately model the student. The 
G G  facilitates the modelling process in an AICAI tutor in three ways. First, the nodes of 
the graph provide a more refined structure for a model of the student's knowledge state 
than the skill sets of subset AICAI systems. Second, the organization of the graph 
provides a metric regarding which skills the student can be expected to acquire next. 
Third, the links of the graph provide a complementary structure for a model of the 
student's learning behavior. 

6.1. T H E  S T U D E N T  K N O W L E D G E  M O D E L  O V E R L A Y S  T H E  N O D E S  
OF  T H E  G E N E T I C  G R A P H  

Script-based CAI systems build student knowledge models by maintaining statistics on 
the correctness of the student's answers. The validity of such models is severely limited 
by the restricted capability of the script to judge correctness, having only a list of 
expected responses on which to judge the answer. 

Expert-based CAI systems escape the limitation of the script by constructing their 
student knowledge model from hypotheses regarding which skills of the embedded 
expert the student is believed to possess. I have termed such models "overlays" 
(Goldstein & Carr, 1977) to emphasize that their structure is derived from the structure 
of the underlying expert  system. 

As an example of the improvement of expert-based modelling over scripts, consider 
Wumpus. The embedded expert of the WUSOR-I I  coach can evaluate any game state 
that arises. The number of such states, given an arbitrary number of caves, of dangers in 
these caves, and of student paths through the resulting maze, is enormous. Scripts of 
correct answers are clearly out of the question. 

But expert-based models have a fundamental limitation. They fail to consider that 
the novice student may not be employing a subset of the expert 's  skills, but rather using 
simplifications, deviations, and other evolutionary predecessors of those skills.t Given 
our GG, the extension is clear. The student's knowledge model will be constructed as an 
overlay, not on the final set of skills, but on the G G  itself. 

6.2. T H E  G E N E T I C  G R A P H  G U I D E S  T H E  C O N S T R U C T I O N  OF  T H E  M O D E L  

Given the form of the model as attributing regions of the G G  to the student, it is now 
appropriate to examine how the model is induced. I shall describe the basic method 
employed by expert-based CAI programs, and then construct an improvement based 
on the learning metric implied by distance between skills in the GG. 

Expert-based CAI constructs the student knowledge model by hypothesizing that a 
student does not possess a skill if the student's answer for a given situation is worse than 

t In certain situations, there is a rationale for exper t -based models.  The "exper t"  may be one selected to be 
only minimally in front of the student.  Or  the task may be sufficiently restricted that novices are generally 
subsets  of the expert ' s  skills. Or  the skills themselves may be broken into small "micro-skil ls" so that 
modell ing in terms of the presence and absence of these micro skills is reasonable.  Indeed, the Genetic  AICAI  
system reduces to the expert  case if the GG does not in fact contain other  than a single subset  of skills. Thus,  
the exper t -based CAI  system can be profitably viewed as a simplification of the Genetic AICAI  system. 
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the answer  the  expe r t  could  d e d u c e  based  on  that  skill.'l'z~ To i l lus t ra te  this, cons ide r  
again  the  scenar io  of  Fig. 2. If the  s tuden t  chooses  cave 14, which is more  d a n g e r o u s  
than its fel lows by the mul t ip le  ev idence  skill,  W U S O R - I I  increases  the weight  of its 
hypo thes i s  that  the s tuden t  does  not  possess  this skill.w 

This  m e t h o d  of  c o m p a r i n g  e m b e d d e d  exper t i se  to s tuden t  p e r f o r m a n c e  r ema ins  basic  
to the  G e n e t i c  A I C A I  sys tem,  but  is i m p r o v e d  as fol lows:  the  G G  is v iewed  as def in ing a 
n u m b e r  of " p l a y e r s "  of increas ing  power ,  c o r r e s p o n d i n g  to i n t e r m e d i a t e  skill  p l a t eaus  
in the  graph .  F o r  W u m p u s ,  there  a re  five such p laye r s  def ined  in t e rms  of the five phases  
of W u m p u s  skill:  

Phase 1: rules for visited, unvisited and fringe caves. 
Phase 2: rules for possibly dangerous, definitely dangerous and safe caves. 
Phase 3: rules for single versus multiply dangerous caves. 
Phase 4: rules for "possibility sets", i.e. keeping track of the sources of dangers. 
Phase 5: rules for numerical evidence. 

Each  of these  " p l a y e r s "  examines  the  s tuden t ' s  move  and p r o p o s e s  which skills the 
s tuden t  a p p e a r s  to be employ ing .  These  hypo the se s  are  a t t ached  to nodes  of the  G G .  
The  overa l l  be l ie f  that  the  s tuden t  possesses  a given skill  is a s u m m a t i o n  ove r  the 
hypo the se s  of the  ind iv idua l  p layers .  

If it were  the  case that  the  s tuden t  might  possess  skills f rom anywhere  in the  G G  with 
equa l  p robab i l i t y ,  then  all of these  p laye r s  would  have equa l  weight  when  fo rmula t ing  
the overa l l  hypothes i s .  But ,  the  G G  e m b o d i e s  a t heo ry  of the evo lu t ion  of  the  l ea rne r ' s  
knowledge .  This  t heo ry  is jus t  that  k n o w l e d g e  evolves  a long  gene t ic  l i n k s - - f r o m  
s impl i f ica t ion  to e l a b o r a t i o n ,  dev ia t i on  to cor rec t ion ,  abs t r ac t ion  to re f inement ,  
spec ia l i za t ion  to genera l i za t ion .  F o r  that  r eason ,  the  h y p o t h e s e s  g e n e r a t e d  by a d v a n c e d  
p laye r s  fu r the r  and  fu r the r  away  f rom the cu r ren t  p l a t eau  are  ass igned less and  less 
weight .  

T h e  resul t  is a des i r ab le  conse rva t i sm in the  mode l l i ng  process .  This  is r e a sonab l e ,  
s ince it accords  wi th  the c o m m o n  sense  educa t iona l  heur is t ic  that  a radical  i m p r o v e -  
m e n t  in the  p lay  of  a s tuden t  is more  l ikely due  to luck than a d i scon t inuous  j u m p  in his 
skills. By the s ame  token ,  a radical  def ic iency in a pa r t i cu l a r  move  is more  p r o b a b l y  due  
to care lessness  than  a d i scon t inuous  j u m p  to some  ea r l i e r  k n o w l e d g e  s ta te .  

This  conse rva t i sm does  not  p r even t  the  A I C A I  coach f rom ever  be l iev ing  in 
d i scon t inuous  j u m p s  in the  s tuden t ' s  knowledge .  Those  p laye r s  based  on skills far f rom 
the s t uden t ' s  cu r r en t  pos i t ion  in the  g raph  are  given some  weight .  Hence ,  the  coach will 
even tua l ly  accept  a radical  change  in the  s tuden t ' s  knowledge .  But  the  conse rva t i sm is 

+ And contrariwise, if the student chooses the expert's choice, then the coach hypothesizes that the student 
is familiar with those skills the expert employed to determine that the move chosen was best. 

~: In fact, the process of modelling is more subtle than this. For each situation analyzed, the raw data is 
recorded as increments to two variables associated with each skill: APPROPRIATE which records how many 
times the Expert believed the skill was appropriate and USED which records how many times the player was 
believed to have employed the rule in appropriate situations. Their ratio forms the FREQUENCY of use of 
the skill. The AICAI tutor acts as though the student knows the rule when this ratio exceeds a threshold. The 
complexities in maintaining such a model are discussed in Carr & Goldstein (1977). 

w simple modelling method is improved by the capability in some AICAI programs to take account of 
the student's background, and in some situations, to ask the student explicitly why he chose a certain option. 
These improvements are orthogonal to the improvement the GG allows in the fundamental method. They are 
discussed in Carr & Goldstein (1977). 
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important: without it, the coach has no capability at all to observe the lucky guess or 
occasional careless move. Hence, the metric on learning defined by the G G  supplies a 
stability missing in expert-based CAI  systems. 

6.3. THE STUDENT LEARNING MODEL OVERLAYS THE LINKS 
OF THE GENETIC GRAPH 

There is still a third dividend to the GG: its links provide the structure for a learning 
model. In the previous section, we discussed the coach's ability to explain a rule in 
multiple ways based on the various genetic links associated with that rule. Now given a 
knowledge model, the coach is in a position to observe the effect of a given explanation 
type. It can determine whether the student employs the skill in subsequent play. If a 
given explanation strategy consistently leads to skill acquisition, it is reasonable to 
believe that this explanation strategy is a successful one for the particular student. If not, 
then the opposite hypothesis can be induced, i.e. that the explanation strategy is not a 
successful teaching strategy for the particular student. Thus, a learning overlay can be 
generated over the set of genetic links that maintains a record of the effectiveness of the 
explanation strategy associated with that link type. 

The use of such a model is straightforward: it serves to personalize the choice of 
explanation strategy for a particular student by selecting from those that have proven 
successful in the past. 

6.4. THE GENETIC GRAPH DOES NOT SOLVE THE MODELLING PROBLEM 

Constructing a model of the student's knowledge and learning attributes is a complex 
task for a human teacher to perform. It is certainly the most difficult activity of an 
A I C A I  tutor. The genetic graph provides a framework for this modelling. The student's 
knowledge is described in terms of the nodes of the graph; his learning behavior in terms 
of the links; his progress in terms of paths in the graph. It provides a more powerful 
foundation for modelling than either a script of correct answers or a set of expert skills. 

Nevertheless, the G G  does not solve the modelling problem. While the process of 
constructing a model gains guidance from the graph, it remains complex. No particular 
answer by the student is certain evidence. He may have misunderstood the question, or 
lost interest in formulating an answer, or changed his goals entirely. The coach, given its 
inability to observe the student's facial expressions, understand his language, or indeed 
even know whether he is at the console thinking or simply taking a stroll, is at a severe 
disadvantage compared to a human teacher. And modelling the student is among the 
most difficult tasks for skilled human teachers. I term this the "bandwidth problem". No 
matter how excellent the G G  is as a representation of the knowledge being acquired, 
modelling is dependent on observing this acquisition. Hence, methods for increasing 
the bandwidth with which the computer coach can observe the student are an important 
supplement to the GG in model building.t The virtue of the GG is simply to provide a 
target data structure for the evidence gathered by this increased bandwidth. 

t For Wumpus, we are currently exploring several kinds of "assistant programs" that serve to increase the 
bandwidth with which the Coach can observe the student. One assistant offers the display screen as an 
interactive medium to replace the pencil and paper the student uses to draw the warren and record his 
hypotheses. In this fashion, the coach can observe that part of the student's intermediate reasoning that is 
overt. It is our expectation that this graphic assistance will make a major improvement in the accuracy of the 
Coach's model. 
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There is another deeper  limitation to the modelling paradigm offered here. While it is 
true that one can only model what one understands, it is not true that one must 
represent the syllabus in such an explicit form. A human teacher can be expected to 
grow his understanding of the task in response to observing the student's behavior. For 
the more general situation of tutoring in large open-ended worlds, this is necessary; 
however, it involves the incorporation of a learning capacity into the coach, a non-trivial 
though important function. The next section discusses a preliminary formulation of the 
learning theory that would be required. 

7. The genetic graph is a basis for learning 

Implicit in the genetic graph is a theory of learning. This section explores this theory and 
considers its implications for the design of computer  coaches. The model of the student 
suggested by the genetic graph is shown in Fig. 9. The processes of the student are 

ENET IC 

FIG. 9. Homunculus model of the student. 
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d iv ided  into two h o m u n c u l i ~ ' - - a  p r o b l e m  solving specia l is t  and  a l ea rn ing  s p e c i a l i s t - -  
with the  g raph  serving as the s tuden t ' s  basic  m e m o r y  s t ruc ture  for  p r o c e d u r a l  know-  
ledge.  T h e  p r o b l e m  solving homuncu lus  appl ies  the  p r o g r a m  def ined  by the f ron t ie r  of 
his gene t ic  g raph  to the  cu r ren t  task. The  learn ing  homuncu lus  ex tends  the  gene t ic  
g raph  in r e sponse  to new tasks,  tu tor ia l  advice  and o b s e r v e d  difficulties of the  cu r ren t  
p r o g r a m .  

The  l ea rn ing  homuncu lus  consists  of  a set of  s t ra teg ies  c o r r e s p o n d i n g  to the  var ious  
l inks of  the  graph.  Its task is to bui ld  new rules,  leaving  b e h i n d - - a s  a r ecord  of  its 
o p e r a t i o n - - l i n k s  which connec t  the new rules  to the i r  evo lu t i ona ry  p redecesso r s .  The  
l inks are  l abe l l ed  with the  l ea rn ing  s t ra tegy  r e spons ib le  for  the construction.~:w 

The  gene t ic  g raph  offers on ly  a s t ruc ture  for  a l ea rn ing  theory .  It suggests  that  the  
l ea rn ing  processes  consist  of  p r o c e d u r e s  which g e n e r a t e  the  var ious  links, but  it does  
not  desc r ibe  the  de ta i l s  of these  processes .  It does  not  e n u m e r a t e  wha t  c r i te r ia  are  used 
to fo rm ana log ies ,  r ecognize  dev ia t ions ,  induce  gene ra l i za t ions  or  cons t ruc t  concep tua l  
refinements.II  

H o w e v e r ,  this s t ruc ture  is of  use, for it focusses  ou r  a t t en t ion  on issues involving the 
in te rac t ion  of  the  teach ing  and  lea rn ing  processes .  F o u r  of  these  issues which I discuss 
be low are :  (1) the  s tuden t  as an act ive agent .  (2) a gene t ic  g raph  for  learn ing ,  (3) a t h e o r y  
of  bel ief ,  and  (4) the  t o p o l o g y  of  the  g raph  as a m e a s u r e  of  l ea rn ing  complex i ty .  

7.1. THE STUDENT IS AN ACTIVE AGENT 

The  m o d e l  of the s tuden t  p r e s e n t e d  above  emphas i ze s  the  v i ewpo in t  that  the s tuden t  is 
an act ive agent ,  engaged  in a cons t ruc t ive  process  of  gene ra t i ng  new knowledge .  F r o m  
this pe r spec t ive ,  the  t u to r ' s  ob j ec t ive  is to e n c o u r a g e  this p rocess  in the  s tudent .  This  
r eminds  us tha t  the  cu r ren t  act ivi ty  of  most  A I C A I  t u t o r s - - i n t e r v e n i n g  and  supply ing  a 
c o m p l e t e  e x p l a n a t i o n - - i s  on ly  one  end  of the  spec t rum of tu to r ing  activity.  A t  the  o t h e r  
end  of  the  spec t rum is " t u t o r i n g  wi thou t  t a lk ing" ,  that  is saying no th ing  at all, but  
ins tead  a l t e r ing  the  p r o b l e m  d o m a i n  in o r d e r  to faci l i ta te  the  l ea rn ing  process .  �82 

T h e r e  are  as well a range  of i n t e r m e d i a t e  in t e rven t ions  be tween  these  two ex t remes .  
A n  e x a m p l e  is that  the  tu tor  could  suggest  tha t  a rule exists  that  cou ld  be app l i ed  in the 
cu r ren t  s i tua t ion  which is ana logous  to some  a l r eady  acqu i red  rules,  bu t  not  speci fy ing 
the new rule o r  s ta t ing  the  ana logy .  The  next  g e n e r a t i o n  of  A I C A I  tu tors  should  be able  

t I use the term "homunculus" to emphasize that the learning and problem solving components are 
envisioned to be machines of exactly the same power. Their only difference lies in their programs. 

~:The links are left behind because they themselves can serve as input to the learning strategies. The 
existence of a profitable analogy can suggest that more analogies "of an analogous kind" are possible. For 
example, an analogy between the rules of bats and pits can suggest a similar analogy between bats and wumpii. 
It may not be exact, but the suggestion offers a direction for the learning homunculus to explore. 

w It is of course a simplification to believe that the entire genetic graph remains available to the learner. In 
fact, there must be a process of forgetting. This process must exist partly to avoid an indefinitely growing use of 
space and partly to eliminate outdated knowledge that would serve only to misguide the learning processes. A 
theory of forgetting is crucial to an overall theory of learning and of teaching, but goes beyond the scope of this 
paper. 

I1 Enumerating such criteria has been the focus of much work in AI, including Winston (1975), Evans 
(1968). Moore & Newell (1973) and Richard Brown (1977) on analogy; and Sussman (1975), Goldstein 
(1975), and Sacerdoti (1975) on debugging. 

"Tutoring without talking" is exemplified by one option WUSOR-II can exercise. It can alte I the 
complexity of the Wumpus game by varying the number of dangers, the propagation distances of their 
warnings, the number of arrows, and the geometric complexity of the warren. WUSOR-I/ does this in 
accordance with its estimate of the student's current level of skill. 
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to supply advice across this spectrum, altering the nature and extent of their inter- 
vention in relation to the current state of the student model. 

7.2. A GENETIC GRAPH FOR LEARNING SKILLS IS POSSIBLE 

Dividing the student into a Learning Homunculus and a Problem Solving Homunculus 
raises the question of whether the skills of the Learning Homunculus can themselves be 
represented as a genetic graph. If there are a collection of rules that define the processes 
of analogy, generalization, debugging and refinement which are themselves related by 
genetic links, then explicating this graph becomes an important AI/Psychology goal. 

A competing hypothesis is that the learning processes are not related one to another, 
nor do they have simplifications from which they evolve. They are only an unstructured 
collection of heuristics, acquired in an isolated fashion. I believe this unlikely, but it may 
not be simple to explicate a genetic graph for learning. 

Constructing a genetic graph for learning skills whose links are again the analogy, 
generalization and other genetic relationships discussed earlier suggests that still a third 
L 2 homunculus is not necessary to oversee the acquisition of learning skills. Rather, 
since the links are the same ones as occur in the domain graph, the Learning 
Homunculus is potentially able to operate on its own genetic graph. Thus the recursion 
of homunculi  is terminated. If this is so, it would be an important result both for 
Artificial Intelligence and for psychology, namely that a single learning theory is 
sufficient for both domain knowledge acquisition and a recursive improvement in the 
system's own learning capacities. 
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Naturally for the process to begin, there must be some learning strategies that are 
innate. Establishing from an AI standpoint which strategies are sufficient to generate 
the remainder  then becomes an important  research question. 

Given a detailed account of the learning processes themselves, the possibility arises 
that the Coach might be able to tutor these very skills. As Fig. 10 illustrates, its tutoring 
could be oriented towards pointing out the relevant genetic strategies for constructing 
new rules. This will be an important  direction for future research, since tutoring the 
skills of any particular domain is less important  than tutoring the processes by which 
these skills are acquired. 

7.3. A B E L I E F  M E A S U R E  C A N  BE D E F I N E D  ON T H E  G E N E T I C  G R A P H  

Presenting both a Learning Homunculus  and a Problem Solving Homunculus  focusses 
our attention on the relation between the two: in particular, it raises the question of 
when a new rule added to the genetic graph becomes a part  of the problem solver 's 
program. It is a simplification to speak of the program of the Problem Solving 
Homunculus  being the frontier of the genetic graph. A new rule may represent  a 
misunderstanding, may not be an improvement ,  or may be as yet incomplete. Hence,  
some inertia is desirable in a dynamic learning system, if it is not to oscillate wildly or 
degrade its per formance  by accepting premature  modifications. 

This corresponds, perhaps,  to the psychological observation that a student does not 
always employ a skill which has just been explained. While the student may be able to 
repeat  the explanation, and even describe implications of the new knowledge, he may 
not actually use the skill when solving problems.  Teachers  recognize this proper ty  of 
students and employ the heuristic of supplying further examples and different kinds of 
explanat ions. t  

A formal representat ion for this learning conservatism can be added to our  learning 
model by introducing a belief measure.  We can restrict a skill on the frontier from being 
employed by the problem solving homunculus until "bel ief"  in this new piece of 
knowledge exceeds some threshold, where "bel ief"  is a function of the number,  kinds 
and recency of explanations and examples that have been provided. In terms of our 
genetic graph representation,  we can say that a new rule is not employed until its linkage 
into the genetic graph is sufficiently strong, i.e. belief in the rule, defined in terms of the 
number  and kinds of links that attach the rule to the existing graph, exceeds some 
threshold.~ 

Such a metric can improve the tutor 's  expectations about  the student 's  use of a rule 
following its introduction. The Psychologist module maintains a record of its estimate of 
the student 's  belief in a rule in terms of the types of explanations provided, their 
recency, and their number.  When belief is below some threshold, the tutor can expect 
that more  explanations will be needed and that the student will be able to describe the 
rule when queried, but probably not employ it.w 

t Authors  of script-based CAI  systems can incorporate this educational heuristic by supplying multiple 
exercises and explanations.  But the scripts do not  provide a theory of where such additional advice will be 
needed. 

$ This is a first order theory. The  linkage strength depends  as well on the number  of situations in which the 
rule has been explained, the time since these links were constructed,  etc. However,  this first order theory is 
sufficient to define some interesting learning complexity criteria which I discuss in the next  section, and imply 
some procedural  consequences  for the Tutor.  

w threshold can be dynamically adjusted on the basis of the s tudent ' s  performance.  
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Given  this refined model ,  we can unde r t ake  a fine gra ined  analysis of belief cri teria in 
learners .  For  example,  some s tudents ,  m a n y  examples  of a few links may engende r  
s t ronger  belief  than  single examples  of m a n y  links. By examina t ion  of the s tuden t ' s  
pe r fo rmance  with respect  to the occurrence  of such bonds ,  we can explore the t rade-ot is  
be tween  diversity,  repe t i t ion  and  recency. The re  is also the cor responding  AI  ques t ion  
of which belief  metrics result  in a reasonable  l ea rn ing  rate, which lead to instabil i ty,  and  

which are too conservat ive.  

7.4. THE GENETIC GRAPH TOPOLOGY PROVIDES A 
LEARNING COMPLEXITY MEASURE 

Focussing on  the genet ic  graph as a record of the l ea rn ing  process suggests a re la t ion-  
ship be tween  var ious topologies  of the graph and  learn ing  complexity.  The  utility of this 
charac ter iza t ion  is that  it provides  guidance  to the Tu t o r  regard ing  which areas of the 
syl labus requi re  more  a t t en t ion  and  to the Psychologist  with respect to which skills the 
s tuden t  can be expected to have difficulty wi th . t  

F rom a l ea rn ing  viewpoint ,  the comple te  genet ic  graph of the tu tor  is a roadmap.  It 
describes var ious paths the s tuden t ' s  l ea rn ing  process might  take. If the tu tor ' s  graph 
shows that  a given rule has m a n y  links, then  the expecta t ion  is that  the s tudent  will have 
little difficulty in acquir ing that  rule himself.  There  are m a n y  oppor tun i t i e s  for him to do 
so. But  if ano the r  rule has bu t  one  l ink to the o ther  rules, or indeed  none ,  then here is a 
topology that  suggests the need  for tu tor ing  advice. 

For  example ,  Fig. 3 showed a cluster of rules densely  connec ted  by genera l iza t ion  and 
analogy links. O u r  belief  metr ic  suggests that  such clusters are easier  to acquire  than  
sparsely connec ted  regions of the graph. The  procedura l  impor t  of graph densi ty  is to 
cause the Tu to r  to expect that  repet i t ion  will be little needed  in dense regions bu t  
s t rongly d e m a n d e d  in sparse areas.~ 

Thus,  topologies  of the syllabus suggest a theory of l ea rn ing  complexity.  Expe r imen t s  
are needed  to de t e rmine  if this is bo rne  out.  But  if so, it is an i mpor t a n t  theoret ical  idea 
for educat ion ,  i n d e p e n d e n t  of the use of computers .w 

tTraditional epistemology discusses validity, not complexity. This is because complexity is not well- 
defined except in relation to a particular learning theory. Traditional epistemology did not have such a theory. 
We are developing a theory of knowledge that is not independent of the "knower". 

~: Recall that in our discussion of the genetic graph and its relation to the Psychologist, I introduced a 
learning complexity metric. This metric was employed to make the Psychologist conservative in its belief that 
the student's behavior had exhibited a particular skill when that skill was far from the frontier of the student's 
current knowledge state. Formally this took the form that the K model "appropriate" and "used" parameters 
are altered proportional to how far the skill is from the student's current knowledge frontier. 

The learning complexity implied by the belief metric for certain syllabus topologies suggests a refinement of 
this complexity metric, namely that sparsely connected nodes should be expected to be more difficult to 
acquire then densely connected ones, if at the same distance from the knowledge frontier. In particular, with 
respect to skills on the frontier, the Psychologist should be conservative in believing that a student has 
acquired a particular skill when that skill is weakly linked to the student's knowledge frontier. 

w It is conceivable that formal analysis of a syllabus with a genetic graph may serve a useful educational 
function by predicting the learning complexity of the material. If the graph is largely a chain of rules, we can 
expect difficulty in convincing the student to employ these skills. Their support will rest entirely on repetition 
of a single explanatory method. On the other hand, if the GG contains many islands, bridges, and clusters, 
then we can expect that little tutoring may be required due to the rich interconnectedness of knowledge in this 
domain. 

The validity of the formal analysis is not yet established. But its importance is clear. Education rests on at 
best a pop epistemology. Philosophic epistemology is too removed from learning. If our analysis provides a 
middle ground, rigorous, obiective and concise but still about the learner's relation to knowledge and not 
some abstract definition of truth, then we have made progress in developing a theory of education. 
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7.5. D E S I G N I N G  SIMULATED STUDENTS IS A RESEARCH M E T H O D O L O G Y  

We intend to explore the many issues raised here by extending our "student simulation 
testbed" to include computer  students which learn. Such students can be used to 
explore the effect of different belief metrics on stability and of different learning 
strategies on the growth of the graph. 

Ultimately, embedding a learning capacity in the coach can have an important 
consequence for the genetic graph itself. It can eliminate the requirement that the 
AICAI tutor have a complete graph to teach. The graph can be incomplete but grown 
by the embedded learning program when needed. 

7.6. T H E  GENETIC  G R A P H  IS NOT A COMPLETE T H E O R Y  OF L E A R N I N G  

While the issues raised in this section are provocative, the genetic graph is by no means a 
complete theory of learning. Hard questions remain to be studied: When should a 
learning strategy be applied? How are profitable analogies, generalizations and 
refinements detected? What are the criteria for forgetting? Furthermore,  there is an 
enormous amount  of experimental exploration that must be done. But I believe it is 
clear that AICAI  programs will gain increased leverage by embodying an explicit 
theory of the learner. 

8. Conclusions 

My interest in the evolution of a learner's knowledge was inspired by Piaget, who often 
speaks of himself as a genetic epistemologist. He characterizes the fundamental problem 
of genetic epistemology as: "the explanation of the construction of novelties in the 
development of knowledge". This paper has explored the construction of new know- 
ledge in terms of a genetic graph. As a test of the effectiveness of this theory, I have 
described a design by which the graph can improve the tutoring and modelling of 
AICAI systems. I have also described a complementary design for a set of computer-  
based learning programs, in which the genetic processes form a separate expert 
operating on the learner's genetic graph. 

Our next step will be to complete the implementation of an AICAI tutor based on the 
genetic graph approach, and experiment with the resulting system. I have little doubt  
that the genetic graph will increase the effectiveness of this tutor over a comparable 
Expert-based system. More interesting will be the fine-grained analysis of learning that 
such a system makes possible. We will employ it to explore such Piagetian questions as 
the following. 

(a) Are there "stages" in the acquisition of these genetic processes as evidenced by 
certain explanation strategies proving unuseable for populations of different age 
and background? 

(b) Does tutoring "procedural  assimilation" prove easier than tutoring "procedural  
accommodation",  where the former is defined in terms of the acquisition of 
additional procedures implementing a known concept, that is intra-island rules 
linked by generalization, specialization, analogy and correction links; while the 
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l a t t e r  r ep re sen t s  the  acquis i t ion  of  a new concep t  and  the  a s soc ia t ed  g rowth  of a 
new is land of  r u l e s ? t  

(c) D o  is lands def ine  s tab le  k n o w l e d g e  p la teaus ,  p rov id ing  a l ind of  " e q u i l i b r a t i o n " ?  

W h i l e  I do  not  know the answers  to these  ques t ions ,  I be l i eve  this p a p e r  d e m o n s t r a t e s  
that  the  fo rma l  s tudy  of l ea rn ing  and  teach ing  r e q u i r e d  by  A I C A I  r e sea rch  is a power fu l  
m e t h o d o l o g y  for  s tudy ing  f u n d a m e n t a l  ques t ions  in cogni t ive  p sycho logy  and  art if icial  
in te l l igence .  

References 

BROWN, R. (1977). Use of analogy to achieve new expertise. M I T A I  Technical Report 403, 
April. 

BROWN, J. S. & BURTON, R. (1977). Diagnostic models for procedural bugs in basic mathema- 
tical skills, ICAI  No. 10. Bolt, Beranek and Newman, August. 

~ROWN, J. S., BURTON, R. & LARKIN, K. (1977). Representing and using procedural bugs for 
educational purposes. Proceedings of 1977 Annual Conference, Association for Computing 
Machinery, Seattle, October, pp. 247-255. 

BROWN, J. S., BURTON, R. & ZDYBEL, F. (1973). A model-driven question-answering system 
for mixed-initiative Computer-Assisted Instruction. IEEE Transactions on Systems, Man 
and Cybernetics, SMC-3(3), 248-257. 

BURTON, R. & BROWN, J. S. (1976). A tutoring and student modelling paradigm for gaming 
environments. In COLEMAN, R & LORTON. P. JR., Eds, Computer Science and Education, 
A C M  SIGCSE Bulletin, 8(1), 236-246. 

BURTON, R. & BROWN, J. S. (1977). Semantic grammar: a technique for constructing natural 
language interfaces to instructional systems. BBNReportNo. 3587, ICAIReportNo. 5, May. 

CARBONELL, J. (1970). AI in CAI:  an Artificial-Intelligence approach to Computer-Assisted 
Instruction. IEEE Transactions on Man-Machine Systems, MMS-II (4) ,  December. 

CARR, B. & GOLDSTEIN, I. (1977). Overlays: a theory of modelling for Computer Aided 
Instruction. MIT A I  Memo 406 Memo 40), February. 

CARR, B. (1977). II: A computer aided instruction program with student modelling capabilities. 
MIT A I  Memo 417 (LOGO Memo 45), May. 

COLLINS, m., WARNOCK, E. & PASSAFIUME, J. (1975). Analysis and synthesis of tutorial 
dialogues. In BOWER, G., Ed., The Psychology of Learning and Motivation, Vol. 9. New 
York: Academic Press. 

DE KLEER, J. (1976). Local methods for localizing faults in electronic circuits. M I T A I M e m o  
394, November. 

EVANS, T. (1968). A program for the solution of geometric-analogy intelligence test questions. 
In MINSKY, M., Ed., Semantic Information Processing. Cambridge, MA: The MIT Press, pp. 
271-353. 

GOLDSTEIN, I. (1975). Summary of MYCROFT:  a system for understanding simple picture 
programs. Artificial Intelligence Journal, 6(3), Fall. 

GOLDSTEIN, I. & CARR, B. (1977). The computer as coach: an athletic paradigm for intellectual 
education. Proceedings of 1977 Annual Conference, Association for Computing Machinery, 
Seattle, October, pp. 227-233. 

GOLDSTEIN, I. & GRIMSON, E. (1977). Annotated production systems: a model for skill 
acquisition. M I T  A I  Memo 407 (LOGO Memo 44), February. 

t For Piaget, "accommodation" for situations where the learner builds new structures to handle a task; 
"assimilation" involves situations where the adaptation of old structures proves sufficient. My definitions of 
procedural assimilation and procedural accommodation are intended to provide a loose analogy, wherein new 
structures correspond to new islands. I employ this analogy only to indicate that our procedural approach 
allows the exploration of precise definitions for the notions of local and global changes to a knowledge 
structure. Whether a more precise match of computational and Piagetian terminology is possible (or fruitful) 
remains to be seen. 



THE GENETIC GRAPH 77 

KOFFMAN, E. & BLOUNT, S. (1975). Artificial Intelligence and automatic programming in CAI. 
Artificial Intelligence, 6, 215-234. 

MOORE, J. & NEWELL, A. (1977). How can MERLIN understand? In GREGG, L. Ed., 
Knowledge and Cognition. Potomac, MD: Lawrence Erlbaum Associates. 

NORMAN, D. (1976). Studies of Learning and Self-Contained Educational Systems, 1973-1976. 
University of California at San Diego, Center for Human Information Processing, Report No. 
7601, March. 

NORMAN, D., GENTNER, D. & STEVENS, A. (1976). Comments on learning: schemata and 
memory representation. In KLAHR, D., Ed., Cognition and Instruction. Hillsdale, N.J.: 
Erlbaum Associates. 

PIAGET (1971). Genetic Epistemology (trans. E. Duckworth). New York: W. W. Norton. 
SACERDOTI, E. (1975). The non-linear nature of plans. Proceedings of the Fourth International 

Joint Conference on Artificial Intelligence, Tbilisi, Georgia, U.S.S.R., pp. 206-218. 
SELF, J. (1974). Student models in Computer-Aided Instruction. International Journal of 

Man-Machine Studies, 6, 261-276. 
SELF, J. (1977). Concept teaching. Artificial Intelligence Journal, 9(2), 197-221. 
SLEEMAN, D. (1975). A problem-solving monitor for a deductive reasoning task. International 

Journal of Man-Machine Studies, 7, 183-211. 
SLEEMAN, D. (1977). A system which allows students to explore algorithms. Proceedings of the 

Fifth International Joint Conference on Artificial Intelligence, August, pp. 780-786. 
SMITH, R. L., GRAVES, H., BLAINE, L. H. & MARINOV, V. G. (1975). Computer-assisted 

axiomatic mathematics: information rigor. In LECAREME, O. & LEWIS, R., Eds, Computers 
in Education Part I: IFIP. Amsterdam: North Holland. 

STANSFIELD, J., CARR, B. & GOLDSTEIN, I. (1976). Wumpus advisor I: a first implementation 
of a program that tutors logical and probabilistic reasoning skills. MITAILaboratory Memo 
No. 381, September. 

STEVENS, A. & COLLINS, A. (1977). The goal structure of a Socratic tutor. Proceedings of 1977 
Annual Conference, Association for Computing Machinery, Seattle, October, pp. 256-263. 

SUSSMAN, G. (1975). A Computational Model of Skill Acquisition. New York: American 
Elsevier. 

WESTCOURT, K., BEARD, M. ~; GOULD, L. (1977). Knowledge-based adaptive curriculum 
sequencing for CAI: application of a network representation. Proceedings of 1977 Annual 
Conference, Association for Computing Machinery, October, pp. 234-240. 

WINSTON, P. (1975). Learning structural descriptions from examples. In WINSTON, P., Ed., The 
Psychology of Computer Vision. New York: McGraw-Hill, pp. 157-209. 

YOI3, G. (1975). Hunt the Wumpus. Creative Computing, September/October, 51-54. 


