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The genetic graph: a representation for the
evolution of procedural knowledget:

IRA P. GOLDSTEIN
Xerox Palo Alto Research, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.

I shall describe a model of the evolution of rule-structured knowledge that serves as a
cornerstone of our development of computer-based coaches. The key idea is a graph
structure whose nodes represent rules, and whose links represent various evolutionary
relationships such as generalization, correction, and refinement. I shall define this graph
and describe a student simulation testbed which we are using to analyze different genetic
graph formulations of the reasoning skills required to play an elementary mathematical
game.
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1. Introduction
1.1. A LEARNER-BASED PARADIGM FOR AICAI IS EVOLVING

The 1970’s have seen the evolution of a new generation of computer-aided instruc-
tional programs based on the inclusion of Al-based expertise within the CAI system.
These systems surmount the restrictive nature of older script-based CAI by supplying
“reactive” learning environments which can analyze a wide range of student responses
by means of an embedded domain-expert. Examples are AICAI tutors for geography
(Carbonell, 1970), electronics (Brown, Burton & Zdybel, 1973), set theory (Smith et
al., 1975), Nuclear Magnetic Resonance spectroscopy (Sleeman, 1975), and mathema-
tical games (Burton & Brown, 1976; Goldstein & Carr, 1977).

However, while the inclusion of domain expertise is an advance over earlier script-
based CAI, the tutoring theory embedded within these benchmark programs for
conveying this expertise is elementary. In particular, they approach teaching from a
subset viewpoint: expertise consists of a set of facts or rules. The student’s knowledge is
modelled as a subset of this knowledge. Tutoring consists of encouraging the growth of
this subset, generally by intervening in situations where a missing fact or rule is the
critical ingredient needed to reach the correct answer.

This is, of course, a simplification of the teaching process. It has allowed research to
focus on the critical task of representing expertise. But the subset viewpoint fails to
represent the fashion in which the new knowledge evolves from old by such processes as
analogy, generalization, debugging and refinement.

T This research was supported under NSF grant SED77-19279 and conducted at the Artificial Intelligence
Laboratory, Massachusetts Institute of Technology.

1 This paper has evolved from many fruitful conversations with members of the Cognitive Computing
Group at the MIT Al Lab (in particular Greg Clemenson, Mark Miller, Sandy Schoichet, Bob Sjoberg, Bill
Swartout, Barbara White, Kurt van Lehn, Bruce Roberts, Jim Stansfield and Steve Rosenberg) and with
members of the ICAI group at Boit, Beranek and Newman (in particular John Seely Brown and Dick Burton).
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This paper explores the genetic graph as a framework for representing procedural
knowledge from an evolutionary viewpoint,T thereby contributing to the movement of
AICAI from an expert-based to a learner-based paradigm.} After introducing our
experimental domain, the mathematical game Wumpus, and describing an expert-
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F1G. 1. Block diagram of an AICAI tutor.

t A potential confusion in terminology may occur here. The term “‘genetic’ is often equated with heredity.
However, | use it here in its older sense, namely, the genetic method is the study of the origins and
development of a phenomena. This paper is an exercise in Genetic Epistemology, the study of the origin
and development of knowledge. This enterprise has been articulately advocated by Piaget (1971), who
considers it the foundation on which psychology should be based.

1 There are other dimensions to this paradigm shift that include: (1) more sophisticated modelling of the
student’s knowledge and learning style (Burton & Brown, 1976; Brown, Burton & Larkin, 1977; Carr &
Goldstein, 1977), (2) widening the communication channel from student to teacher via natural language
interfaces (Burton & Brown, 1977), and (3) developing a theory of teaching skills (Collins, Warnock &
Passafiume, 1975).



THE GENETIC GRAPH 53

based coach which we have implemented, I define the genetic graph and describe how it
can improve the range of tutoring advice that the AICAI system can provide and the
accuracy of the model that the system builds of the learner. Fig. 1 illustrates its central
role.

I then discuss in greater detail the model of the learner implicit in the genetic graph. By
articulating this model, I am able to suggest a measure of learning complexity in terms of
the topological properties of the graph. I conclude with a suggestion for reformulating
traditional Piagetian notions of accommodation, assimilation and equilibration in terms
of our procedural epistemology.

While I shall describe a student simulation testbed which we have implemented to
test various genetic graph formulations, this paper is largely exploratory. Its purpose is
to serve as a critique of existing expert-based AICAI systems, in particular our Wumpus
coach, and a proposal for an improved ‘learner-based’” design.

1.2. A GRAPH REPRESENTATION OF THE SYLLABUS HAS ROOTS

IN AICA] RESEARCH

Scholar {Carbonell, 1970), the earliest of the AICAI tutors, employed a graph
(semantic net) representation for declarative facts about geography. The graph,
however, encoded only domain specific relationships; it did not embody a series of
progressively more refined levels of geography knowledge linked by various evolu-
tionary relationships.¥

SOPHIE-1 (Brown et al., 1973), the next major AICAI milestone, was an expert-
based system for the more complex domain of electronic troubleshooting. SOPHIE-1
compared a student’s troubleshooting hypotheses for an electronic circuit with that of
its embedded expert and offered advice when the student’s analysis went astray. It
employed a procedural rather than a network representation for its electronics know-
ledge, but this representation was largely a black box. SOPHIE-1 did not have access to
a detailed, modular, human-oriented representation of troubleshooting skills. Nor did
it have a representation for the genesis of these skills.

SOPHIE-2, now under development, will incorporate a modular, anthropomorphic
representation for the expert’s knowledge (De Kleer, 1976). This structured expertise
serves as a better foundation for expert-based tutoring, but still is not a model of how
the student evolved to that level of competence.

BUGGY (Brown et al., 1977), a program for building procedural models of a
student’s arithmetic skills, does incorporate both a graph representation for the basic
skills and some evolutionary relationships. The basic skill representation is a graph with
links representing the skill/subskill relationships. The evolutionary component consists
of “‘deviation’ links to “‘buggy”’ versions of the various skills.

BIP-11 (Westcourt, Beard & Gould, 1977), a tutor for programming skills, again
employs a network for the basic skill representation, but embodies a different set of
evolutionary relationships. There are links for representing analogy, generalization,
specialization, prerequisite and relative difficulty relations. The BIP-II skill network,
however, does not include deviation links nor define an operational expert for the

+ Scholar might be extended in this fashion, especially if employed with younger children whose theory of
the world may not already be stabilized in the expert form embodied by Scholar.
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programming domain. Rather it employs author-supplied exercises attached to the
relevant skills in the network.

The genetic graph is a descendant of these network representations. Its nodes are the
procedural skills of players of varying proficiency and its links include the analogy,
specialization, generalization and prerequisite relations of BIP-II and the deviation
relationships of BUGGY.}

2. Wumpus serves as an experimental domain

Designing coaches for the maze exploration game, Wumpus (Yob, 1975) has proven to
be a profitable experimental domain because the game exercises basic skills in logic and
probability.§ This section defines our version of the game| and describes two expert-
based coaches which have been previously implemented for it. The next section
formulates an evolutionary epistemology of the knowledge required for skilled play,
providing the basis for an improved ‘““learner-based’ design.

2.1. DEFINITION OF THE WUMPUS GAME

The player is initially placed somewhere in a warren of caves with the goal of slaying
the Wumpus. The difficulty in finding the beast arises from the existence of dangers
in the warren—bats, pits and the Wumpus itself. Pits and the Wumpus are fatal; bats
move the player to a random cave elsewhere in the warren. But the player can infer the
probable location of dangers from warnings he receives. The Wumpus can be sensed
two caves away, pits and bats one cave away. Victory results from shooting an arrow
into the Wumpus’s lair; defeat if the arrows are fruitlessly exhausted.

Becoming skilled poses a non-trivial learning experience for most children and
adults:{ locating multiple dangers in a randomly connected warren of 20 or more caves
can be complex. Hence, the game provides a useful problem domain for developing a
theory of the evolution of procedural skills.

2.2. WUMPUS AICAI TUTORS

In 1976, we developed WUSOR-I (Stansfield, Carr & Goldstein, 1976), an expert-
based coach. Skilled play was analyzed in terms of rules such as these:

T Malt (Koffman & Blount, 1975), a tutor for machine language programming, does include an ‘“‘expert” for
problems composed from a limited set of skills and solved in a tutor-prescribed order. However, MALT’s
syllabus of skills are related only by the probability with which MALT includes them in a system-generated
problem, and not by any evolutionary links. Hence, MALT does not have BIP’s ability to choose a problem
based on its evolutionary relationship to the student’s current knowledge state.

1 The skill nodes themselves, corresponding to rules of the form: “if C1& C2 & ..., do A1 & A2 & ... ",
could be expanded into more primitive networks of conditions and conjunction nodes similar to those
employed in BUGGY and BIP-1I, but I do not discuss that extension in this paper. Instead, I concentrate on
describing the evolutionary relationships between skills.

§Our group is also exploring evolutionary epistemologies for other domains ranging from elementary
programming to airplane flying.

| Yob’s original game was played on the graph of a dodecahedron. Our version is a generalization involving
a variable maze geometry, a variable number of dangers, and a variable warning distance for each danger.

9 By non-trivial, I mean that the experience is on the order of hours rather than minutes and that some
players (given no coaching) fail to acquire certain skills after many hours of play. This is based on informal
observations of over 30 players ranging in age from grade school children to adults.
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Positive Evidence: A warning implies that a danger is in a neighboring cave.
Elimination: If a cave has a warning and all but one of its neighbors are known to be
safe, then the danger is in the remaining neighbor.

Multiple Evidence: Multiple warnings increase the likelihood that a given cave
contains a danger.

Below is an interaction with the WUSOR-I coach which illustrates the fashion in
which the coach explains a rule if its employment would result in a better move than the
one chosen by the student. The student’s responses are indented and underlined.

You are at cave 15 with neighbors 4, 14 and 0. Brrr! There is a draft. You are near a
pit. What now?

1>4
You are at cave 4 with neighbors 15, 14 and 2. Brrr! There is a draft. Squeak! A bat
is near. (The game state is shown in Fig. 2.) What now?

2>14
(E1) Mary, it isn’t necessary to take such large risks with pits. There is multiple
evidence of a pitin cave 14 which makes it quite likely that cave 14 contains a pit. It is

less likely that cave O contains a pit. Hence, we might want to explore cave 0 instead.
Do you want to take back your move?

14
o SQUEAK
(o] 15 R 4 o 2
A A
F F
T T

F1G. 2. The Wumpus game state after two moves,

WUSOR-I was insensitive to the relative difficulty of the various Wumpus skills. In
1977, we took our first step toward an evolutionary epistemology with WUSOR-II
(Carr, 1977), wherein the rule set was divided into five phases representing increasing
skill at the task:

Phase 1: Rules for visited, unvisited and fringe caves.

Phase 2: Rules for possibly dangerous, definitely dangerous and safe caves.
Phase 3: Rules for single versus multiply dangerous caves.

Phase 4: Rules for “‘possibility sets”, i.e. keeping track of the sources of dangers.
Phase 5: Rules for numerical evidence.

The tutor did not describe the rule of a particular level of play until it believed the
student was familiar with the rules of the preceding levels.t

t (Carr & Goldstein, 1977) describes the mechanisms by which it estimated the student’s position in the
syllabus.
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These phases constituted a coarse genetic epistemology, better than the completely
unordered approach of WUSOR-I, but still far from a detailed platform on which to
build new knowledge from old in the student’s mind. WUSOR-III, now being imple-
mented, addresses this limitation. It has evolved from WUSOR-II by defining a set of
symbolic links between rules that characterize such relationships as analogy,
refinement, correction, and generalization.T The result is that the ‘‘syllabus’ of the
coach has evolved from an unordered skill set to a genetic graph of skills linked by their
evolutionary relationships.

3. The genetic graph formalizes the syllabus

The “genetic graph” (GG) formalizes the evolution of procedural rules by representing
the rules as nodes and their interrelationships as links. In this section I discuss four of
these relationships—generalization/specialization, analogy, deviation/correction and
simplification/refinement—and provide examples of their occurrence in the Wumpus
syllabus. I also describe a student simulation testbed which we have implemented to
explore the consequences of different rule formulations. In the next section, I consider
what kinds of knowledge are not properly represented by a graph of rules, and propose
appropriate extensions.

3.1. GENETIC LINKS SPECIFY EVOLUTIONARY RELATIONSHIPS BETWEEN RULES

R'is a generalization of R if R’ is obtained from R by quantifying over some constant.
Specialization is the inverse relation. In the Wumpus syllabus, for each trio of
specialized rules for bats, pits and the Wumpus, there is usually a common generaliza-
tion in terms of warnings and dangers.§ Figure 3 illustrates such a cluster for rule 2.2
which represents the deduction: ‘‘a warning implies that the neighbors of the current
cave are dangerous”.

R'is analogous to Rif there exists a mapping from the constants of R’ to the constants
of R. This is the structural definition employed by Moore & Newell (1973). Of course,
not all analogies defined in this fashion are profitable. However, the GG is employed to
represent those that are.

Figure 3 illustrates analogy links between the specialization trio of R2.2 For example,
mapping SQUEAK to DRAFT and B+ (the set of caves risking BATS) to P+ (the sets
of caves risking PITS) defines the analogy mapping between R2.2B and R2.2P. The
similar nature of dangers makes clusters of this kind (one generalization and three
specializations all connected by analogy links) common in the Wumpus world. As we
shall discuss in section 5, identifying such densely linked clusters provides teaching
leverage by providing multiple methods of explanation (one per link) for each consti-
tuent rule.

t It was also necessary to increase the grain of the rules. WUSOR-II rules were too coarse and hence
obscured certain evolutionary relationships.

t This is a standard predicate calculus definition, applied here to quantifying over formulas representing
rules rather than logical statements.

§ In one version of Wumpus, the wumpus warning propagates only one cave. In this case, bats, pits and the
wumpus are exactly analogous. In more complex versions, the Wumpus is no longer exactly analogous.
Hence, the analogies to bats and pit rules are in fact restricted cases or outright deviations. We represent this
in the GG explicitly, thereby giving the coach an expectation for the traps the student will encounter.
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R'is a refinement of R if R’ manipulates a subset of the data manipulated by R on the
basis of some specialized properties. Simplification is the inverse relation. This relation
represents the evolution of a rule to take account of a finer set of distinctions.
The Wumpus syllabus contains five major refinements corresponding to the five
WUSOR-II phases. Figure 3 illustrates the refinement of the rule R1.1 through phases
1, 2 and 3. R2.1 and R2.2, for example, refine R1’s treatment of the fringe caves by
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distinguishing between safe and dangerous subsets. R3.1 and R3.2, in turn, refine the
dangerous subset into single and multiply dangerous categories.

R'is a deviation of R if R’ has the same purpose as R but fails to fulfill that purpose in
some circumstances. Correction is the inverse relation. Deviations arise naturally in
learning as the result of simplifications, overgeneralizations, mistaken analogies, and so
on. While any rule can have deviant forms, the GG is used to record the more common
errors.}

A deviant Wumpus rule is: “If there is multiple evidence that a cave contains a pit,
then that cave definitely contains a pit”’. The debugged rule includes the additional
condition that there is only one pit in the warren. The deviation has a natural genetic
origin: it is a reasonable rule in the early stages of Wumpus play when the game is
simplified by the coach to contain only one of each danger.

3.2. GENETIC GRAPHS ARE BEING EXPLORED IN A STUDENT SIMULATION TESTBED

The Wumpus GG currently contains about 100 rules and 300 links.i We are
currently testing the reasonableness of this graph by means of a “Student Simulation
Testbed”.§|| In this testbed, the performance of various simulated students, defined in
terms of different regions of the GG, is being examined. These students correspond to
different evolutionary states. Figure 4 is the comparative trace of two students cor-
responding to the mastery of phases 2 and 3, respectively.

The “WHY" messages of Fig. 4 are printed by the student simulator as the rules
defining a student are executed. The comments inside cave boxes represent hypotheses
of the simulated student regarding that cave. The balloons reflect the differing hypo-
theses of the two students regarding bat evidence for caves J and H.

The phase 2 student (dotted path) does not know the multiple evidence heuristic.
Hence, he does not realize that cave J is to be preferred over cave H. While he
understands that they both risk bats, he makes no further distinction. Thus, he
randomly selects from these two possibilities, unfortunately choosing the riskier H. The

t The deviant skills recorded in the GG account for errors arising from the correct application of incorrect
rules. There is another class of errors arising from the incorrect application of correct rules. These are errors
arising from such causes as the occasional failure to check all preconditions of a rule, the misreading of data, or
confusion in the bookkeeping associated with a search process. Sleeman (1977) explores some errors of this
class in his construction of a coach which analyzes a student’s description of his algorithm. Sleeman’s coach,
however, does not have a representation for deviant or simplified versions of the algorithm to be tutored:
indeed, he assumes that the student is familiar with the basic algorithm. A possible extension of his system
would be to include a GG representing evolutionary predecessors of the skilled expert.

i+ These statistics are based on an explicit representation of each generalization, its specializations and their
common deviations. It is possible for the graph to be less extensive if procedures for generating common
deviations and specializations are supplied. This is the approach we shall eventually employ. Specializations
are simple to generate. Deviations are suggested by the common bug types enumerated by such work as my
own analysis of Logo programs (Goldstein, 1975), Sussman’s (1975) analysis of Blocks world programs, and
Stevens & Collin’s (1977) study of bugs in causal reasoning; or they can be induced, for simple cases, by
analyzing the student’s performance (Self, 1974; Goldstein, 1975, Brown & Burton, 1977). However, my
current research strategy has been to make the graph explicit, in order to understand its form. The next stage
will include the extension to expanding the graph dynamically. }

§ The testbed serves other purposes as well. Simulated students can be used to test the modelling and
tutoring of teaching systems (Carr, 1977; Self, 1977; Wescourt et al., 1977). They can also serve as models of
real students, and hence can yield insight for a human teacher observing their performance (Brown ef al.,
1977; Goldstein & Grimson, 1977).

| Following this testing period, WUSOR-II will be converted to incorporate the GG. The expected
improvement in modelling and tutoring is the subject of sections 5 and 6.
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F1G. 4. Divergent behavior of two simulated students.

phase 3 student (dashed path) recognizes multiple (BAT2) evidence as more risky than
single (BAT1) evidence and therefore selects the safer cave J.

Figure 4 is a composite of the graphic output for the two students. The testbed only
executes a single student at a time. It does not generate balloons nor place the “WHY™”
messages on the Warren itself.

Expert-based CAI allows only for the definition of ‘“‘simulated students” formed
from subsets of the expert’s skills. The power of the GG to broaden the tutor’s
understanding of the task is evident from the testbed: the GG permits not only the
creation of subset students, but also students formed from specializations, deviations
and simplifications of the expert’s rules.

Nevertheless, it must be stressed that the evolutionary relations discussed here
remain both underspecified and incomplete. There are many kinds of analogies,
generalizations, and corrections. There are also other kinds of evolutionary processes
for acquiring knowledge: learning by being told, learning by induction from past
examples, and learning by deduction from old rules. The next chapter explores one of
the directions in which the GG must be extended to be an adequate representation for
the evolution of a student’s knowledge.

4. Extensions to the genetic graph

The preceding section defined a set of genetic relationships between individual rules. In
this section, we extend the genetic graph to incorporate genetic relationships between
groups of rules and between rules and the declarative facts that explain and justify their
behavior.
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4.1. THE EXTENDED GG GROUPS RELATED KNOWLEDGE INTO ISLANDS

Our first order theory of a GG has the limitation that rules which are closely related and
generally learned as a group are not so represented. To address this limitation, rules are
grouped into islands. A natural criterion for forming islands is to group rules that have
the same goal. For Wumpus, this translates into grouping rules which manipulate the
same kind of evidence. This is illustrated in Fig. 5.

For example, the D+ island contains the rules which manipulate D+, the set of
possibly dangerous caves. One rule subtracts the neighbors of the current cave from D+
if there is no warning. The complementary rule is also present: it adds to D+ the
neighbor set if there is a warning. The third rule in the D+ island subtracts the visited
caves from D+. It insures that D+ contains only fringe caves. (A postrequisite planning
link exists between these last two rules which is explained later in this section.)

Islands allow the coach to tutor the student in terms of an overall concept for a group
of rules and to model the student in terms of his possession of the conceptual base
underlying a rule set. Just as an analogy between two rules can be explained, so too can
an analogy between two islands of rules. Figure 5 illustrates this with an analogy link
between the safe and dangerous islands.

The acquisition of a group of skills is a natural learning episode since acquiring the
island is a local task—the rules all follow from a single concept. But moving to the next
island requires a new conceptual base. To explore this movement, the simulated student
testbed allows macro instructions which add entire islands of rules to the simulated
student being constructed:

> (Define__student 5 (island F) (island D—) (island D+))
Student S defined. ; This is the phase 2 player of Fig. 4.

> (Define__student 6 (student 5) (island D1) (island D2))
Student 6 defined. ; This is the phase 3 player of Fig. 4.

4.2. THE EXTENDED GG REPRESENTS THE JUSTIFICATIONS OF RULES

The GG as a representation of knowledge is still incomplete. Rules by themselves do
not describe the declarative knowledge that explains and justifies their behavior. For
Wumpus, this declarative knowledge includes the definition of the evidence sets and
axiomatic statements of their properties. Figure 6 shows the declarative facts listed
below linked to the various groups of rules whose behavior they justify.

The fringe F is the union of D+ and D— (the safe caves).

A warning implies that some of the neighbors of the current cave are members of
D+.

D— and D+ are disjoint.

The GG employed in the student simulation testbed has not yet been augmented in this
fashion.

This extension will be important because of the possibility that the same evolutionary
relationships linking procedural rules can play a role linking declarative statements.
One logistic statement can be a generalization of another, or analogous under some
mapping of constants, or a refinement. With such an extended GG, the coach could
tutor both procedural and declarative knowledge, obtaining leverage by moving
between the two in the light of the student’s current difficulties.
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4.3. THE EXTENDED GG REPRESENTS PLANNING KNOWLEDGE

Not all knowledge about rules describes their evolutionary relationships. Since sets of
rules form problem solving programs for the task, we should expect, as with ali
programs, that knowledge about their order of application must be represented. There
is no difficulty in extending the GG to represent this knowledge. It is only necessary to
define the appropriate links. For this reason, prerequisite and postrequisite relations
are defined.t Figure 5 illustrates various planning relations. For example, a post-
requisite link insures that the D+ rule “If there is a warning, add the neighbors to D+
is followed by the rule ““Subtract the visited cave set from D+.”” This second rule is
needed since some of the neighbors added to D+ may have been already visited, and
hence are safe.t

t Analternative is to supply meta-rules that specify the order of application. This is a useful approach when
the goal is an expert program, but it is not sufficient for the tutoring context. A meta-rule that specifies that a
trio of rules be executed in the order R1, R2, R3 does not tell the tutor whether this is the only order or merely
one among 2 set of possible orders. The tutor must know if it is to respond appropnately to the student’s
idiosyncratic approach. The planning links provide only the basic ordering constraints. Sacerdot: {1975}
makes a similar argument for planning networks to facilitate self-debugging on the part of a problem soiving
system.

1 A single rule could have been written: “If there is a warning, add N-V to D+", but breaking this
procedure into two rules allows a finer grain of modelling and tutoring. The coach must be able to identify the
deviant simplification of adding the neighbors without pruning the caves already visited. Thus as a general
philosophy, rules are broken into small chunks with planning knowledge made explicit via links between
rules.
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Thus, the extended GG incorporates planning knowledge. As with any addition of
knowledge, it supplies tutoring leverage. The coach can now expect that for certain
rules, the student’s difficulty may lie not in knowing the rules, but in understanding their
order. The consequences of such confusion can be explored in the student simulation
testbed. Below is illustrated a situation where the student has apparently forgotten to
execute a postrequisite rule and shows the advice the new GG-based coach might offer
in such situations.

The following interaction with the Wumpus game was obtained from a version that
allows the player to record his or her hypotheses on the display screen. The player’s
responses are underlined. The final tutorial intervention (in italics) is a hypothetical one
by the GG-based coach now under construction.
We are now in cave D. The neighbors are caves C, G, and B. What now?

>B
We are now in cave B. The neighbors are caves F, D, and A. What a stench! The
Wumpus must be in one of the neighboring caves. Squeak! I hear bats. They must be
in one of the neighboring caves. What now?

>X+ ;This command marks caves that may contain a danger.

Which danger (Bats, Pits or Wumpus)? BW. Which caves? AFD

: The result is that the display screen shows a warren in which BAT+ and WUM +

markers appear in the designated caves. (Fig. 7 is a snapshot of the display in this

state.)

What now?
>C

Ira, you have correctly recorded that caves A, F and D risk bats based on the squeak in
cave B. However, you have moved to cave C without concluding that cave D is safe.
You know cave D is safe because you have visted there. You might want to record this
knowledge to avoid confusion.

SQUEAK
A BAT « B BAT+
WM+ . (V.0 28
SMELL
D BAT»
WUMe

WARREN ©: 2 BATS, 1 PIT, 1 WHMPUS TRAIL BD
(VISTITED BD FRINGE ACTG UNVISTITED EHITK

BAT- BAT+ ADF
PIT- PIT+
WM W+ ADF

FiG. 7. Planning advice.
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4.4. THE EXTENDED GG IS A NETWORK OF ISLANDS

In conclusion, the extended genetic graph is not different in kind from the basic genetic
graph. It remains a graph of knowledge nodes linked by various genetic relationships.
Its increased power derives from a hierarchical structure of grouped rules (islands), an
extension of individual nodes from representing only rules to representing both rules
and facts, and an augmentation of the link set to include control knowledge.

Implicit in this structure is the following view of learning: new rules are constructed
from old in terms of processes corresponding to the individual links. However, the
graph does not describe a unique evolutionary path. One learner may rapidly acquire a
generalization, another may first build several specializations before constructing the
generalization, while a third may never acquire the generalization. Hence, the tutor
should encourage this idiosyncratic construction of new knowledge by giving advice
appropriate to the learner’s current knowledge state (position in the graph) and
particular style of learning (preference for particular links). The redesign of the
Wumpus coach to employ the guidance of the GG to more closely approximate this
ideal tutoring behavior is the subject of the next two sections.

5. The genetic graph is a basis for tutoring

The GG guides the Tutor component of an AICAI system in two ways. First, it suggests
which skills to discuss with the student, namely those at the frontier of the student’s
position in the graph. Second, once a skill is chosen for discussion, the GG supplies
guidance for explaining that skill in more than one way by means of relating it to its
evolutionary predecessors.

5.1. THE GENETIC GRAPH SUGGESTS THE TUTORING TOPIC

In script-based CAI, the order in which topics are introduced is predefined. The student
proceeds to the next author-supplied question after he has successfully answered the
current query. This has the advantage that the author can control the introduction of
material in the light of his understanding of the subject matter, but the disadvantage
that the order is rigid.

Expert-based CAl is less rigid since it has the power to allow the student to explore a
problem in his own fashion, analyzing his responses in terms of an underlying skill set.
Tutoring is oriented around supplying advice in those situations wherein the student has
chosen a less than ideal option. But the Expert-based tutor has no guidance with respect
to whether discussion of a given skill is premature in the context of those skills the
student has already acquired.

Providing a genetic graph addresses this limitation. If we accept the educational
heuristic that learning is facilitated by being able to explain a new skill in terms of those
already acquired, the skills with the highest priority for being taught are those on the
“frontier” of the student’s knowledge model. Employing this heuristic, the AICAI
tutor can limit its intervention to those situations with “leverage’’, namely those that
involve the discussion of a skill on the frontier. For example, consider two students: a
beginner who has mastered the basic fringe rules and whose frontier is the dangerous
and safe islands, and an intermediate player who has mastered these islands and whose
frontier is now at the multiple evidence island. Let us consider what kind of tutoring the
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AICAI coach should offer if the player moves to cave 14 in the scenario game of Fig. 2.
Recall that 14 is a bad choice because the existence of double evidence makes it likely
that a fatal pit is there. For the intermediate student, the tutor would intervene—there is
leverage to describe the double evidence heuristic in terms of its evolutionary prede-
cessors; for the beginner, the tutor would not—there are no available genetic links with
which to build an explanation.

The GG does not solve the “choice of topic” problem. It offers the frontier as a
preferred subset, but the Tutor must still choose among this subset or possibly decide to
reject it entirely.t To make this decision, the Tutor must apply general teaching
heuristics (“Vary the topic discussed!””) and student specific strategies (‘Maximize the
opportunity for ‘discovery learning’; that is, do not discuss any topic at all when the
student’s progress through the syllabus is proceeding at a satisfactory rate!”). The role
of the GG in this context is simply to make available to these teaching heuristics the
epistemological relations between the skills of the syllabus.

5.2. THE GENETIC GRAPH SUPPLIES MULTIPLE EXPLANATIONS

Once a topic is selected, the ability to explain that topic in more than one way is
an important tutoring technique. Script-based CAI achieved this explanatory power
by supplying ‘‘author” languages in which clever explanations could be written by
teachers. Expert-based CAI, by eliminating scripts, lost this power. But in return it
acquired the ability to respond to a larger number of situations, albeit by means
of a restricted number of machine-generated explanation types. Genetic AICAI
retains the Expert-based CALl ability to respond to a large number of situations, but
adds the capability to explain a particular skill in diverse ways. This capability derives
from the ability to explain a new rule in terms of its genetic links. For each link type, the
tutor is provided with an explanation strategy. For example, Fig. 8 shows three
variations on a WUSOR-II explanation generated by explaining the “avoid multiply
dangerous situations” rule in terms of its evolutionary relatives. (The basic WUSOR-II
explanation is the one we examined earlier for the poor move to cave 14 in the game
state of Fig. 2.)

As with the selection of the rule to be discussed, the choice of explanation for that rule
is not determined by the GG. That choice depends on general teaching heuristics (such
as “Vary your explanation!”) and student specific criteria (such as “Avoid strategies
which have been consistently unsuccesstul in the past!”). The role of the GG, however,
is to increase the available choices on which these selectional heuristics operate.

T There are alternatives to frontier tutoring. A teacher could seek to explain the syllabus as a whole to give
the student perspective. Then later the teacher could return to a given subset of the syllabus and refine the
student’s knowledge. Norman refers to this approach as Web tutoring (Norman, Gentner & Stevens, 1976). It
is more useful however for a syllabus of facts than one of procedural skills. The reason is that skills have
prerequisite relations that prevent advanced skills from being used before simpler ones are acquired. Static
facts don’t generally have such a rigid ordering. Thus our skill tutors usually do not employ the Web
technique.

Nevertheless, it is possible to explain a skill whose evolutionary predecessors have not been acquired by
constructing a long explanation ab initio. The frontier heuristic biases the system against such an approach,
but the Tutor may be required to employ it in some situations (the frontier skills have already been explained
many times and the student appears to need some perspective on the syllabus) and for some kinds of syllabi
(the skills are largely independent of one another).
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F1G. 8. Variations on an explanation.

5.3. TUTORING USING AN EXTENDED SYLLABUS REPRESENTATION

The range of tutoring strategies is increased further by employing the extended syllabus
described in the previous section. Examine again Fig. 5. The islands of rules for
dangerous and safe caves are linked by a ‘““bridge analogy”, a generalization of the
analogy linking the individual rules. By tutoring the bridge analogy, explanatory
leverage is gained by providing support for an entire group of rules in a single
explanation.

Similarly, a declarative foundation provides another opportunity for generating
support for an entire set of rules. Here the common link is from a set of declarative facts
to the island of rules they imply. For example, the tutor, using the declarative
foundation, might discuss the general importance of the concept of multiple evidence
rather than the specific rules employed to maintain the single and multiple evidence
sets. Again, the tutoring hypothesis is that by discussing the declarative foundation, the
student will deduce a group of related rules on his own. It is therefore a potentially
powerful tutoring strategy.

5.4. THE GENETIC GRAPH DOES NOT SOLVE THE TUTORING PROBLEM

Tutoring is a complex task for Al-based CAI systems that do not have access to
author-supplied scripts. The system must decide (1) whether to invervene, (2) what
topic to discuss, and (3) how much to say about that topic.t The GG does not decide
these questions. However, it does serve, first, to constrain the set of topics by defining a

t See Collins er ai. (1975) for a study of Socratic intervention strategies.
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frontier, and, second, to extend the variety of explanations available for discussing the
topic of choice.

6. The genetic graph is a basis for modelling

To offer appropriate tutorial advice, a teacher must accurately model the student. The
GG facilitates the modelling process in an AICAI tutor in three ways. First, the nodes of
the graph provide a more refined structure for a model of the student’s knowledge state
than the skill sets of subset AICAI systems. Second, the organization of the graph
provides a metric regarding which skills the student can be expected to acquire next.
Third, the links of the graph provide a complementary structure for a model of the
student’s learning behavior.

6.1. THE STUDENT KNOWLEDGE MODEL OVERLAYS THE NODES

OF THE GENETIC GRAPH

Script-based CAI systems build student knowledge models by maintaining statistics on
the correctness of the student’s answers. The validity of such models is severely limited
by the restricted capability of the script to judge correctness, having only a list of
expected responses on which to judge the answer.

Expert-based CAI systems escape the limitation of the script by constructing their
student knowledge model from hypotheses regarding which skills of the embedded
expert the student is believed to possess. I have termed such models “overlays”
(Goldstein & Carr, 1977) to emphasize that their structure is derived from the structure
of the underlying expert system.

As an example of the improvement of expert-based modelling over scripts, consider
Wumpus. The embedded expert of the WUSOR-II coach can evaluate any game state
that arises. The number of such states, given an arbitrary number of caves, of dangers in
these caves, and of student paths through the resulting maze, is enormous. Scripts of
correct answers are clearly out of the question.

But expert-based models have a fundamental limitation. They fail to consider that
the novice student may not be employing a subset of the expert’s skills, but rather using
simplifications, deviations, and other evolutionary predecessors of those skills.T Given
our GG, the extension is clear. The student’s knowledge model will be constructed as an
overlay, not on the final set of skills, but on the GG itself.

6.2. THE GENETIC GRAPH GUIDES THE CONSTRUCTION OF THE MODEL

Given the form of the model as attributing regions of the GG to the student, it is now
appropriate to examine how the model is induced. [ shall describe the basic method
employed by expert-based CAI programs, and then construct an improvement based
on the learning metric implied by distance between skills in the GG.

Expert-based CAI constructs the student knowledge model by hypothesizing that a
student does not possess a skill if the student’s answer for a given situation is worse than

t In certain situations, there is a rationale for expert-based models. The “expert” may be one selected to be
only minimally in front of the student. Or the task may be sufficiently restricted that novices are generally
subsets of the expert’s skills. Or the skills themselves may be broken into small “micro-skills’ so that
modelling in terms of the presence and absence of these micro skills is reasonable. Indeed, the Genetic AICAI
system reduces to the expert case if the GG does not in fact contain other than a single subset of skills. Thus,
the expert-based CAI system can be profitably viewed as a simplification of the Genetic AICAI system.
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the answer the expert could deduce based on that skill.¥} To illustrate this, consider
again the scenario of Fig. 2. If the student chooses cave 14, which is more dangerous
than its fellows by the multiple evidence skill, WUSOR-II increases the weight of its
hypothesis that the student does not possess this skill.§

This method of comparing embedded expertise to student performance remains basic
to the Genetic AICAI system, but is improved as follows: the GG is viewed as defining a
number of “‘players” of increasing power, corresponding to intermediate skill plateaus
in the graph. For Wumpus, there are five such players defined in terms of the five phases
of Wumpus skill:

Phase 1: rules for visited, unvisited and fringe caves.

Phase 2: rules for possibly dangerous, definitely dangerous and safe caves.
Phase 3: rules for single versus multiply dangerous caves.

Phase 4: rules for “‘possibility sets™, i.e. keeping track of the sources of dangers.
Phase 5: rules for numerical evidence.

Each of these “‘players’ examines the student’s move and proposes which skills the
student appears to be employing. These hypotheses are attached to nodes of the GG.
The overall belief that the student possesses a given skill is a summation over the
hypotheses of the individual players.

If it were the case that the student might possess skills from anywhere in the GG with
equal probability, then all of these players would have equal weight when formulating
the overall hypothesis. But, the GG embodies a theory of the evolution of the learner’s
knowledge. This theory is just that knowledge evolves along genetic links—from
simplification to elaboration, deviation to correction, abstraction to refinement,
specialization to generalization. For that reason, the hypotheses generated by advanced
players further and further away from the current plateau are assigned less and less
weight.

The result is a desirable conservatism in the modelling process. This is reasonable,
since it accords with the common sense educational heuristic that a radical improve-
ment in the play of a student is more likely due to luck than a discontinuous jump in his
skills. By the same token, a radical deficiency in a particular move is more probably due
to carelessness than a discontinuous jump to some earlier knowledge state.

This conservatism does not prevent the AICAI coach from ever believing in
discontinuous jumps in the student’s knowledge. Those players based on skills far from
the student’s current position in the graph are given some weight. Hence, the coach will
eventually accept a radical change in the student’s knowledge. But the conservatism is

+ And contrariwise, if the student chooses the expert’s choice, then the coach hypothesizes that the student
is familiar with those skills the expert employed to determine that the move chosen was best.

¥ In fact, the process of modelling is more subtle than this. For each situation analyzed, the raw data is
recorded as increments to two variables associated with each skill: APPROPRIATE which records how many
times the Expert believed the skill was appropriate and USED which records how many times the player was
believed to have employed the rule in appropriate situations. Their ratio forms the FREQUENCY of use of
the skill. The AICALI tutor acts as though the student knows the rule when this ratio exceeds a threshold. The
complexities in maintaining such a model are discussed in Carr & Goldstein (1977).

§ This simple modelling method is improved by the capability in some AICAI programs to take account of
the student’s background, and in some situations, to ask the student explicitly why he chose a certain option.
These improvements are orthogonal to the improvement the GG allows in the fundamental method. They are
discussed in Carr & Goldstein (1977).
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important: without it, the coach has no capability at all to observe the lucky guess or
occasional careless move. Hence, the metric on learning defined by the GG supplies a
stability missing in expert-based CAI systems.

6.3. THE STUDENT LEARNING MODEL OVERLAYS THE LINKS
OF THE GENETIC GRAPH
There is still a third dividend to the GG: its links provide the structure for a learning
model. In the previous section, we discussed the coach’s ability to explain a rule in
multiple ways based on the various genetic links associated with that rule. Now given a
knowledge model, the coach is in a position to observe the effect of a given explanation
type. It can determine whether the student employs the skill in subsequent play. If a
given explanation strategy consistently leads to skill acquisition, it is reasonable to
believe that this explanation strategy is a successful one for the particular student. If not,
then the opposite hypothesis can be induced, i.e. that the explanation strategy is not a
successful teaching strategy for the particular student. Thus, a learning overlay can be
generated over the set of genetic links that maintains a record of the effectiveness of the
explanation strategy associated with that link type.

The use of such a model is straightforward: it serves to personalize the choice of
explanation strategy for a particular student by selecting from those that have proven
successful in the past.

6.4. THE GENETIC GRAPH DOES NOT SOLVE THE MODELLING PROBLEM

Constructing a model of the student’s knowledge and learning attributes is a complex
task for a human teacher to perform. It is certainly the most difficult activity of an
AICALI tutor. The genetic graph provides a framework for this modelling. The student’s
knowledge is described in terms of the nodes of the graph; his learning behavior in terms
of the links; his progress in terms of paths in the graph. It provides a more powerful
foundation for modelling than either a script of correct answers or a set of expert skills.

Nevertheless, the GG does not solve the modelling problem. While the process of
constructing a model gains guidance from the graph, it remains complex. No particular
answer by the student is certain evidence. He may have misunderstood the question, or
lost interest in formulating an answer, or changed his goals entirely. The coach, given its
inability to observe the student’s facial expressions, understand his language, or indeed
even know whether he is at the console thinking or simply taking a stroll, is at a severe
disadvantage compared to a human teacher. And modelling the student is among the
most difficult tasks for skilled human teachers. I term this the ‘“‘bandwidth problem”. No
matter how excellent the GG is as a representation of the knowledge being acquired,
modelling is dependent on observing this acquisition. Hence, methods for increasing
the bandwidth with which the computer coach can observe the student are an important
supplement to the GG in model building.t The virtue of the GG is simply to provide a
target data structure for the evidence gathered by this increased bandwidth.

t For Wumpus, we are curreatly exploring several kinds of ‘‘assistant programs” that serve to increase the
bandwidth with which the Coach can observe the student. One assistant offers the display screen as an
interactive medium to replace the pencil and paper the student uses to draw the warren and record his
hypotheses. In this fashion, the coach can observe that part of the student’s intermediate reasoning that is
overt. It is our expectation that this graphic assistance will make a major improvement in the accuracy of the
Coach’s model.
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There is another deeper limitation to the modelling paradigm offered here. While it is
true that one can only model what one understands, it is not true that one must
represent the syllabus in such an explicit form. A human teacher can be expected to
grow his understanding of the task in response to observing the student’s behavior. For
the more general situation of tutoring in large open-ended worlds, this is necessary;
however, it involves the incorporation of a learning capacity into the coach, a non-trivial
though important function. The next section discusses a preliminary formulation of the
learning theory that would be required.

7. The genetic graph is a basis for learning

Implicitin the genetic graph is a theory of learning. This section explores this theory and
considers its implications for the design of computer coaches. The model of the student
suggested by the genetic graph is shown in Fig. 9. The processes of the student are
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Fi1G. 9. Homunculus model of the student.
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divided into two homunculit—a problem solving specialist and a learning specialist—
with the graph serving as the student’s basic memory structure for procedural know-
ledge. The problem solving homunculus applies the program defined by the frontier of
his genetic graph to the current task. The learning homunculus extends the genetic
graph in response to new tasks, tutorial advice and observed difficulties of the current
program.

The learning homunculus consists of a set of strategies corresponding to the various
links of the graph. Its task is to build new rules, leaving behind—as a record of its
operation—links which connect the new rules to their evolutionary predecessors. The
links are labelled with the learning strategy responsible for the construction.t§

The genetic graph offers only a structure for a learning theory. It suggests that the
learning processes consist of procedures which generate the various links, but it does
not describe the details of these processes. It does not enumerate what criteria are used
to form analogies, recognize deviations, induce generalizations or construct conceptual
refinements. ||

However, this structure is of use, for it focusses our attention on issues involving the
interaction of the teaching and learning processes. Four of these issues which I discuss
below are: (1) the student as an active agent, (2) a genetic graph for learning, (3) a theory
of belief, and (4) the topology of the graph as a measure of learning complexity.

7.1. THE STUDENT IS AN ACTIVE AGENT

The model of the student presented above emphasizes the viewpoint that the student is
an active agent, engaged in a constructive process of generating new knowledge. From
this perspective, the tutor’s objective is to encourage this process in the student. This
reminds us that the current activity of most AICAI tutors—intervening and supplying a
complete explanation—is only one end of the spectrum of tutoring activity. At the other
end of the spectrum is “‘tutoring without talking”, that is saying nothing at all, but
instead altering the problem domain in order to facilitate the learning process. {
There are as well a range of intermediate interventions between these two extremes.
An example is that the tutor could suggest that a rule exists that could be applied in the
current situation which is analogous to some already acquired rules, but not specifying
the new rule or stating the analogy. The next generation of AICAI tutors should be able

t1 use the term “homunculus” to emphasize that the learning and problem solving components are
envisioned to be machines of exactly the same power. Their only difference lies in their programs.

} The links are left behind because they themselves can serve as input to the learning strategies. The
existence of a profitable analogy can suggest that more analogies “of an analogous kind”* are possible. For
example, an analogy between the rules of bats and pits can suggest a similar analogy between bats and wumpii.
It may not be exact, but the suggestion offers a direction for the learning homunculus to explore.

§ It is of course a simplification to believe that the entire genetic graph remains available to the learner. In
fact, there must be a process of forgetting. This process must exist partly to avoid an indefinitely growing use of
space and partly to eliminate outdated knowledge that would serve only to misguide the learning processes. A
theory of forgetting is crucial to an overall theory of learning and of teaching, but goes beyond the seope of this
paper.

[l Enumerating such criteria has been the focus of much work in Al, including Winston (1975}, Evans
(1968). Moore & Newell (1973) and Richard Brown (1977) on analogy; and Sussman (1975), Goldstein
(1975), and Sacerdoti (1975) on debugging.

9 “Tutoring without talking” is exemplified by one option WUSOR-II can exercise. It can altey the
complexity of the Wumpus game by varying the number of dangers, the propagation distances of their
warnings, the number of arrows, and the geometric complexity of the warren. WUSOR-II does this in
accordance with its estimate of the student’s current level of skill.
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to supply advice across this spectrum, altering the nature and extent of their inter-
vention in relation to the current state of the student model.

7.2. A GENETIC GRAPH FOR LEARNING SKILLS IS POSSIBLE

Dividing the student into a Learning Homunculus and a Problem Solving Homunculus
raises the question of whether the skills of the Learning Homunculus can themselves be
represented as a genetic graph. If there are a collection of rules that define the processes
of analogy, generalization, debugging and refinement which are themselves related by
genetic links, then explicating this graph becomes an important AI/Psychology goal.

A competing hypothesis is that the learning processes are not related one to another,
nor do they have simplifications from which they evolve. They are only an unstructured
collection of heuristics, acquired in an isolated fashion. I believe this unlikely, but it may
not be simple to explicate a genetic graph for learning.

Constructing a genetic graph for learning skills whose links are again the analogy,
generalization and other genetic relationships discussed earlier suggests that still a third
L? homunculus is not necessary to oversee the acquisition of learning skills. Rather,
since the links are the same ones as occur in the domain graph, the Learning
Homunculus is potentially able to operate on its own genetic graph. Thus the recursion
of homunculi is terminated. If this is so, it would be an important result both for
Artificial Intelligence and for psychology, namely that a single learning theory is
sufficient for both domain knowledge acquisition and a recursive improvement in the
system’s own learning capacities.
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Naturally for the process to begin, there must be some learning strategies that are
innate. Establishing from an Al standpoint which strategies are sufficient to generate
the remainder then becomes an important research question.

Given a detailed account of the learning processes themselves, the possibility arises
that the Coach might be able to tutor these very skills. As Fig. 10 illustrates, its tutoring
could be oriented towards pointing out the relevant genetic strategies for constructing
new rules. This will be an important direction for future research, since tutoring the
skills of any particular domain is less important than tutoring the processes by which
these skills are acquired.

7.3. A BELIEF MEASURE CAN BE DEFINED ON THE GENETIC GRAPH

Presenting both a Learning Homunculus and a Problem Solving Homunculus focusses
our attention on the relation between the two: in particular, it raises the question of
when a new rule added to the genetic graph becomes a part of the problem solver’s
program. It is a simplification to speak of the program of the Problem Solving
Homunculus being the frontier of the genetic graph. A new rule may represent a
misunderstanding, may not be an improvement, or may be as yet incomplete. Hence,
some inertia is desirable in a dynamic learning system, if it is not to oscillate wildly or
degrade its performance by accepting premature modifications.

This corresponds, perhaps, to the psychological observation that a student does not
always employ a skill which has just been explained. While the student may be able to
repeat the explanation, and even describe implications of the new knowledge, he may
not actually use the skill when solving problems. Teachers recognize this property of
students and employ the heuristic of supplying further examples and different kinds of
explanations.t

A formal representation for this learning conservatism can be added to our learning
model by introducing a belief measure. We can restrict a skill on the frontier from being
employed by the problem solving homunculus until “belief” in this new piece of
knowledge exceeds some threshold, where “belief’ is a function of the number, kinds
and recency of explanations and examples that have been provided. In terms of our
genetic graph representation, we can say that a new rule is not employed until its linkage
into the genetic graph is sufficiently strong, i.e. belief in the rule, defined in terms of the
number and kinds of links that attach the rule to the existing graph, exceeds some
threshold.f

Such a metric can improve the tutor’s expectations about the student’s use of a rule
following its introduction. The Psychologist module maintains a record of its estimate of
the student’s belief in a rule in terms of the types of explanations provided, their
recency, and their number. When belief is below some threshold, the tutor can expect
that more explanations will be needed and that the student will be able to describe the
rule when queried, but probably not employ it.§

1 Authors of script-based CAI systems can incorporate this educational heuristic by supplying multiple
exercises and explanations. But the scripts do not provide a theory of where such additional advice will be
needed.

1 This is a first order theory. The linkage strength depends as well on the number of situations in which the
rule has been explained, the time since these links were constructed, etc. However, this first order theory is
sufficient to define some interesting learning complexity criteria which I discuss in the next section, and imply
some procedural consequences for the Tutor.

§ This threshold can be dynamically adjusted on the basis of the student’s performance.
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Given this refined model, we can undertake a fine grained analysis of belief criteria in
learners. For example, some students, many examples of a few links may engender
stronger belief than single examples of many links. By examination of the student’s
performance with respect to the occurrence of such bonds, we can explore the trade-offs
between diversity, repetition and recency. There is also the corresponding Al question
of which belief metrics result in a reasonable learning rate, which lead to instability, and
which are too conservative.

7.4. THE GENETIC GRAPH TOPOLOGY PROVIDES A
LEARNING COMPLEXITY MEASURE

Focussing on the genetic graph as a record of the learning process suggests a relation-
ship between various topologies of the graph and learning complexity. The utility of this
characterization is that it provides guidance to the Tutor regarding which areas of the
syllabus require more attention and to the Psychologist with respect to which skills the
student can be expected to have difficulty with.¥

From a learning viewpoint, the complete genetic graph of the tutor is a roadmap. It
describes various paths the student’s learning process might take. If the tutor’s graph
shows that a given rule has many links, then the expectation is that the student will have
little difficulty in acquiring that rule himself. There are many opportunities for him to do
so. But if another rule has but one link to the other rules, or indeed none, then here is a
topology that suggests the need for tutoring advice.

For example, Fig. 3 showed a cluster of rules densely connected by generalization and
analogy links. Our belief metric suggests that such clusters are easier to acquire than
sparsely connected regions of the graph. The procedural import of graph density is to
cause the Tutor to expect that repetition will be little needed in dense regions but
strongly demanded in sparse areas.}

Thus, topologies of the syllabus suggest a theory of learning complexity. Experiments
are needed to determine if this is borne out. But if so, it is an important theoretical idea
for education, independent of the use of computers.§

T Traditional epistemology discusses validity, not complexity. This is because complexity is not well-
defined except in relation to a particular learning theory. Traditional epistemology did not have such a theory.
We are developing a theory of knowledge that is not independent of the ‘“knower”.

} Recall that in our discussion of the genetic graph and its relation to the Psychologist, I introduced a
learning complexity metric. This metric was employed to make the Psychologist conservative in its belief that
the student’s behavior had exhibited a particular skill when that skill was far from the frontier of the student’s
current knowledge state. Formally this took the form that the K model “‘appropriate” and “used”™ parameters
are altered proportional to how far the skill is from the student’s current knowledge frontier.

The learning complexity implied by the belief metric for certain syllabus topologies suggests a refinement of
this complexity metric, namely that sparsely connected nodes should be expected to be more difficult to
acquire then densely connected ones, if at the same distance from the knowledge frontier. In particular, with
respect to skills on the frontier, the Psychologist should be conservative in believing that a student has
acquired a particular skill when that skill is weakly linked to the student’s knowledge frontier.

§ It is conceivable that formal analysis of a syllabus with a genetic graph may serve a useful educational
function by predicting the learning complexity of the material. If the graph is largely a chain of rules, we can
expect difficulty in convincing the student to employ these skills. Their support will rest entirely on repetition
of a single explanatory method. On the other hand, if the GG contains many islands, bridges, and clusters,
then we can expect that little tutoring may be required due to the rich interconnectedness of knowledge in this
domain.

The validity of the formal analysis is not yet established. But its importance is clear. Education rests on at
best a pop epistemology. Philosophic epistemology is too removed from learning. If our analysis provides a
middle ground, rigorous, objective and concise but still about the learner’s relation to knowledge and not
some abstract definition of truth, then we have made progress in developing a theory of education.
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7.5. DESIGNING SIMULATED STUDENTS IS A RESEARCH METHODOLOGY

We intend to explore the many issues raised here by extending our “student simulation
testbed” to include computer students which learn. Such students can be used to
explore the effect of different belief metrics on stability and of different learning
strategies on the growth of the graph.

Ultimately, embedding a learning capacity in the coach can have an important
consequence for the genetic graph itself. It can eliminate the requirement that the
AICALI tutor have a complete graph to teach. The graph can be incomplete but grown
by the embedded jearning program when needed.

7.6. THE GENETIC GRAPH IS NOT A COMPLETE THEORY OF LEARNING

While the issues raised in this section are provocative, the genetic graph is by no means a
complete theory of learning. Hard questions remain to be studied: When should a
learning strategy be applied? How are profitable analogies, generalizations and
refinements detected? What are the criteria for forgetting? Furthermore, there is an
enormous amount of experimental exploration that must be done. But I believe it is
clear that AICAI programs will gain increased leverage by embodying an explicit
theory of the learner.

8. Conclusions

My interest in the evolution of a learner’s knowledge was inspired by Piaget, who often
speaks of himself as a genetic epistemologist. He characterizes the fundamental problem
of genetic epistemology as: ‘“‘the explanation of the construction of novelties in the
development of knowledge’. This paper has explored the construction of new know-
ledge in terms of a genetic graph. As a test of the effectiveness of this theory, I have
described a design by which the graph can improve the tutoring and modelling of
AICAI systems. [ have also described a complementary design for a set of computer-
based learning programs, in which the genetic processes form a separate expert
operating on the learner’s genetic graph.

Our next step will be to complete the implementation of an AICAI tutor based on the
genetic graph approach, and experiment with the resulting system. I have little doubt
that the genetic graph will increase the effectiveness of this tutor over a comparable
Expert-based system. More interesting will be the fine-grained analysis of learning that
such a system makes possible. We will employ it to explore such Piagetian questions as
the following.

(a) Are there “‘stages” in the acquisition of these genetic processes as evidenced by
certain explanation strategies proving unuseable for populations of different age
and background?

(b) Does tutoring “procedural assimilation’ prove easier than tutoring “procedural
accommodation”, where the former is defined in terms of the acquisition of
additional procedures implementing a known concept, that is intra-island rules
linked by generalization, specialization, analogy and correction links; while the
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latter represents the acquisition of a new concept and the associated growth of a
new island of rules?t
(c) Doislands define stable knowledge plateaus, providing a lind of “‘equilibration”?

While I do not know the answers to these questions, I believe this paper demonstrates
that the formal study of learning and teaching required by AICAI research is a powerful
methodology for studying fundamental questions in cognitive psychology and artificial
intelligence.
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